Operator's Manual

POWER FEED® 10M Single Bench

For use with machines having Code Numbers:
11377, 11900

Register your machine:
www.lincolnelectric.com/register

Authorized Service and Distributor Locator:
www.lincolnelectric.com/locator

Save for future reference

Date Purchased

Code: (ex: 10859)

Serial: (ex: U1060512345)
SAFETY

FOR ENGINE powered equipment.

1. **a.** Turn the engine off before troubleshooting and maintenance work unless the maintenance work requires it to be running.

2. **b.** Operate engines in open, well-ventilated areas or vent the engine exhaust fumes outdoors.

3. **c.** Do not add the fuel near an open flame welding arc or when the engine is running. Stop the engine and allow it to cool before refueling to prevent spilled fuel from vaporizing on contact with hot engine parts and igniting. Do not spill fuel when filling tank. If fuel is spilled, wipe it up and do not start engine until fumes have been eliminated.

4. **d.** Keep all equipment safety guards, covers and devices in position and in good repair. Keep hands, hair, clothing and tools away from V-belts, gears, fans and all other moving parts when starting, operating or repairing equipment.

5. **e.** In some cases it may be necessary to remove safety guards to perform required maintenance. Remove guards only when necessary and replace them when the maintenance requiring their removal is complete. Always use the greatest care when working near moving parts.

6. **f.** Do not put your hands near the engine fan. Do not attempt to override the governor or idler by pushing on the throttle control rods while the engine is running.

7. **g.** To prevent accidentally starting gasoline engines while turning the engine or welding generator during maintenance work, disconnect the spark plug wires, distributor cap or magneto wire as appropriate.

ELECTRIC AND MAGNETIC FIELDS may be dangerous

2. **a.** Electric current flowing through any conductor causes localized Electric and Magnetic Fields (EMF). Welding current creates EMF fields around welding cables and welding machines.

2. **b.** EMF fields may interfere with some pacemakers, and welders having a pacemaker should consult their physician before welding.

2. **c.** Exposure to EMF fields in welding may have other health effects which are now not known.

2. **d.** All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:

 1. **d.1.** Route the electrode and work cables together - Secure them with tape when possible.

 2. **d.2.** Never coil the electrode lead around your body.

 2. **d.3.** Do not place your body between the electrode and work cables. If the electrode cable is on your right side, the work cable should also be on your right side.

 2. **d.4.** Connect the work cable to the workpiece as close as possible to the area being welded.

 2. **d.5.** Do not work next to welding power source.

CALIFORNIA PROPOSITION 65 WARNINGS

Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.

The engine exhaust from this product contains chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.

The Above For Diesel Engines

The Above For Gasoline Engines

ARC WELDING CAN BE HAZARDOUS. PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACEMAKER WEARERS SHOULD CONSULT WITH THEIR DOCTOR BEFORE OPERATING.

Read and understand the following safety highlights. For additional safety information, it is strongly recommended that you purchase a copy of “Safety in Welding & Cutting - ANSI Standard Z49.1” from the American Welding Society, P.O. Box 351040, Miami, Florida 33135 or CSA Standard W117.2-1974. A Free copy of “Arc Welding Safety” booklet E205 is available from the Lincoln Electric Company, 22801 St. Clair Avenue, Cleveland, Ohio 44117-1199.

BE SURE THAT ALL INSTALLATION, OPERATION, MAINTENANCE AND REPAIR PROCEDURES ARE PERFORMED ONLY BY QUALIFIED INDIVIDUALS.

CALIFORNIA PROPOSITION 65 WARNINGS

Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.

The engine exhaust from this product contains chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.

The Above For Diesel Engines

The Above For Gasoline Engines

ARC WELDING CAN BE HAZARDOUS. PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACEMAKER WEARERS SHOULD CONSULT WITH THEIR DOCTOR BEFORE OPERATING.

Read and understand the following safety highlights. For additional safety information, it is strongly recommended that you purchase a copy of “Safety in Welding & Cutting - ANSI Standard Z49.1” from the American Welding Society, P.O. Box 351040, Miami, Florida 33135 or CSA Standard W117.2-1974. A Free copy of “Arc Welding Safety” booklet E205 is available from the Lincoln Electric Company, 22801 St. Clair Avenue, Cleveland, Ohio 44117-1199.

BE SURE THAT ALL INSTALLATION, OPERATION, MAINTENANCE AND REPAIR PROCEDURES ARE PERFORMED ONLY BY QUALIFIED INDIVIDUALS.

FOR ENGINE powered equipment.

1. **a.** Turn the engine off before troubleshooting and maintenance work unless the maintenance work requires it to be running.

2. **b.** Operate engines in open, well-ventilated areas or vent the engine exhaust fumes outdoors.

3. **c.** Do not add the fuel near an open flame welding arc or when the engine is running. Stop the engine and allow it to cool before refueling to prevent spilled fuel from vaporizing on contact with hot engine parts and igniting. Do not spill fuel when filling tank. If fuel is spilled, wipe it up and do not start engine until fumes have been eliminated.

4. **d.** Keep all equipment safety guards, covers and devices in position and in good repair. Keep hands, hair, clothing and tools away from V-belts, gears, fans and all other moving parts when starting, operating or repairing equipment.

5. **e.** In some cases it may be necessary to remove safety guards to perform required maintenance. Remove guards only when necessary and replace them when the maintenance requiring their removal is complete. Always use the greatest care when working near moving parts.

6. **f.** Do not put your hands near the engine fan. Do not attempt to override the governor or idler by pushing on the throttle control rods while the engine is running.

7. **g.** To prevent accidentally starting gasoline engines while turning the engine or welding generator during maintenance work, disconnect the spark plug wires, distributor cap or magneto wire as appropriate.

ELECTRIC AND MAGNETIC FIELDS may be dangerous

2. **a.** Electric current flowing through any conductor causes localized Electric and Magnetic Fields (EMF). Welding current creates EMF fields around welding cables and welding machines.

2. **b.** EMF fields may interfere with some pacemakers, and welders having a pacemaker should consult their physician before welding.

2. **c.** Exposure to EMF fields in welding may have other health effects which are now not known.

2. **d.** All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:

 1. **d.1.** Route the electrode and work cables together - Secure them with tape when possible.

 2. **d.2.** Never coil the electrode lead around your body.

 2. **d.3.** Do not place your body between the electrode and work cables. If the electrode cable is on your right side, the work cable should also be on your right side.

 2. **d.4.** Connect the work cable to the workpiece as close as possible to the area being welded.

 2. **d.5.** Do not work next to welding power source.
SAFETY

ARC RAYS can burn.

4.a. Use a shield with the proper filter and cover plates to protect your eyes from sparks and the rays of the arc when welding or observing open arc welding. Headshield and filter lens should conform to ANSI Z87.1 standards.

4.b. Use suitable clothing made from durable flame-resistant material to protect your skin and that of your helpers from the arc rays.

4.c. Protect other nearby personnel with suitable, non-flammable screening and/or warn them not to watch the arc nor expose themselves to the arc rays or to hot spatter or metal.

FUMES AND GASES can be dangerous.

5.a. Welding may produce fumes and gases hazardous to health. Avoid breathing these fumes and gases. When welding, keep your head out of the fume. Use enough ventilation and/or exhaust at the arc to keep fumes and gases away from the breathing zone. When welding with electrodes which require special ventilation such as stainless or hard facing (see instructions on container or MSDS) or on lead or cadmium plated steel and other metals or coatings which produce highly toxic fumes, keep exposure as low as possible and within applicable OSHA PEL and ACGIH TLV limits using local exhaust or mechanical ventilation. In confined spaces or in some circumstances, outdoors, a respirator may be required. Additional precautions are also required when welding on galvanized steel.

5.b. The operation of welding fume control equipment is affected by various factors including proper use and positioning of the equipment, maintenance of the equipment and the specific welding procedure and application involved. Worker exposure level should be checked upon installation and periodically thereafter to be certain it is within applicable OSHA PEL and ACGIH TLV limits.

5.c. Do not weld in locations near chlorinated hydrocarbon vapors coming from degreasing, cleaning or spraying operations. The heat and rays of the arc can react with solvent vapors to form phosgene, a highly toxic gas, and other irritating products.

5.d. Shielding gases used for arc welding can displace air and cause injury or death. Always use enough ventilation, especially in confined areas, to insure breathing air is safe.

5.e. Read and understand the manufacturer's instructions for this equipment and the consumables to be used, including the material safety data sheet (MSDS) and follow your employer's safety practices. MSDS forms are available from your welding distributor or from the manufacturer.

5.f. Also see item 1.b.
SAFETY

WELDING and CUTTING

SPARKS can cause fire or explosion.

6.a. Remove fire hazards from the welding area. If this is not possible, cover them to prevent the welding sparks from starting a fire. Remember that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas. Avoid welding near hydraulic lines. Have a fire extinguisher readily available.

6.b. Where compressed gases are to be used at the job site, special precautions should be used to prevent hazardous situations. Refer to “Safety in Welding and Cutting” (ANSI Standard Z49.1) and the operating information for the equipment being used.

6.c. When not welding, make certain no part of the electrode circuit is touching the work or ground. Accidental contact can cause overheating and create a fire hazard.

6.d. Do not heat, cut or weld tanks, drums or containers until the proper steps have been taken to insure that such procedures will not create flammable or toxic vapors from substances inside. They can cause an explosion even though they have been “cleaned”. For information, purchase “Recommended Safe Practices for the Preparation for Welding and Cutting of Containers and Piping That Have Held Hazardous Substances”, AWS F4.1 from the American Welding Society (see address above).

6.e. Vent hollow castings or containers before heating, cutting or welding. They may explode.

6.f. Sparks and spatter are thrown from the welding arc. Wear oil free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes and a cap over your hair. Wear ear plugs when welding out of position or in confined places. Always wear safety glasses with side shields when in a welding area.

6.g. Connect the work cable to the work as close to the welding area as practical. Work cables connected to the building framework or other locations away from the welding area increase the possibility of the welding current passing through lifting chains, crane cables or other alternate circuits. This can create fire hazards or overheat lifting chains or cables until they fail.

6.h. Also see item 1.c.

6.i. Read and follow NFPA 51B “Standard for Fire Prevention During Welding, Cutting and Other Hot Work”, available from NFPA, 1 Batterymarch Park, PO box 9101, Quincy, Ma 022690-9101.

6.j. Do not use a welding power source for pipe thawing.

CYLINDER may explode if damaged.

7.a. Use only compressed gas cylinders containing the correct shielding gas for the process used and properly operating regulators designed for the gas and pressure used. All hoses, fittings, etc. should be suitable for the application and maintained in good condition.

7.b. Always keep cylinders in an upright position securely chained to an undercarriage or fixed support.

7.c. Cylinders should be located:

- Away from areas where they may be struck or subjected to physical damage.
- A safe distance from arc welding or cutting operations and any other source of heat, sparks, or flame.

7.d. Never allow the electrode, electrode holder or any other electrically “hot” parts to touch a cylinder.

7.e. Keep your head and face away from the cylinder valve outlet when opening the cylinder valve.

7.f. Valve protection caps should always be in place and hand tight except when the cylinder is in use or connected for use.

7.g. Read and follow the instructions on compressed gas cylinders, associated equipment, and CGA publication P-1, “Precautions for Safe Handling of Compressed Gases in Cylinders,” available from the Compressed Gas Association 1235 Jefferson Davis Highway, Arlington, VA 22202.

FOR ELECTRICALLY powered equipment.

8.a. Turn off input power using the disconnect switch at the fuse box before working on the equipment.

8.b. Install equipment in accordance with the U.S. National Electrical Code, all local codes and the manufacturer’s recommendations.

8.c. Ground the equipment in accordance with the U.S. National Electrical Code and the manufacturer’s recommendations.

Refer to http://www.lincolnelectric.com/safety for additional safety information.
PRÉCAUTIONS DE SÛRETÉ

Pour votre propre protection lire et observer toutes les instructions et les précautions de sûreté spécifiques qui parraissent dans ce manuel aussi bien que les précautions de sûreté générales suivantes:

Sûreté Pour Soudage A L’Arc

1. **Protégez-vous contre la secousse électrique:**
 - Les circuits à l’électrode et à la pièce sont sous tension quand la machine à souder est en marche. Eviter toujours tout contact entre les parties sous tension et la peau nue ou les vêtements mouillés. Porter des gants secs et sans trous pour isoler les mains.
 - Faire très attention de bien s’isoler de la masse quand on soudé dans des endroits humides, ou sur un plancher métallique ou des grilles métalliques, principalement dans les positions assis ou couché pour lesquelles une grande partie du corps peut être en contact avec la masse.
 - Maintenir le porte-électrode, la pince de masse, le câble de soudage et la machine à souder en bon et sûr état de fonctionnement.
 - Ne jamais plonger le porte-électrode dans l’eau pour le refroidir.
 - Ne jamais toucher simultanément les parties sous tension des porte-électrodes connectés à deux machines à souder parce que la tension entre les deux pinces peut être le total de la tension à vide des deux machines.
 - Si on utilise la machine à souder comme une source de courant pour soudage semi-automatique, ces précautions pour le porte-électrode s’appliquent aussi au pistolet de soudage.

2. **Dans le cas de travail au dessus du niveau du sol,** se protéger contre les chutes dans le cas ou on recoit un choc. Ne jamais enrouler le câble-électrode autour de n’importe quelle partie du corps.

3. **Un coup d’arc peut être plus sévère qu’un coup de soleil,** donc:
 - Utiliser un bon masque avec un verre filtrant approprié ainsi qu’un verre blanc afin de se protéger les yeux du rayonnement de l’arc et des projections quand on soude ou quand on regarde l’arc.
 - Porter des vêtements convenables afin de protéger la peau de soudeur et des aides contre le rayonnement de l’arc.
 - Protéger l’autre personnel travaillant à proximité au soudage à l’aide d’écrans appropriés et non-inflammables.

4. **Des gouttes de laitier en fusion sont émises de l’arc de soudage.** Se protéger avec des vêtements de protection libres de l’huile, tels que les gants en cuir, chemise épaisse, pantalons sans revers, et chaussures montantes.

5. **Toujours porter des lunettes de sécurité dans la zone de soudage.** Utiliser des lunettes avec écrans latéraux dans les zones où l’on pique le laitier.

6. **Eloigner les matériaux inflammables ou les recouvrir afin de prévenir tout risque d’incendie dû aux étincelles.**

7. **Quand on ne soude pas, poser la pince à une endroit isolé de la masse.** Un court-circuit accidentel peut provoquer un échauffement et un risque d’incendie.

8. **S’assurer que la masse est connectée le plus près possible de la zone de travail qu’il est pratique de le faire.** Si on place la masse sur la charpente de la construction ou d’autres endroits éloignés de la zone de travail, on augmente le risque de voir passer le courant de soudage par les chaines de levage, câbles de grue, ou autres circuits. Cela peut provoquer des risques d’incendie ou d’échauffement des chaines et des câbles jusqu’à ce qu’ils se rompent.

9. **Assurer une ventilation suffisante dans la zone de soudage.** Ceci est particulièrement important pour le soudage de tôles galvanisées plombées, ou cadmiées ou tout autre métal qui produit des fumées toxiques.

10. **Ne pas souder en présence de vapeurs de chlore provenant d’opérations de dégraissage, nettoyage ou pistoletage.** La chaleur ou les rayons de l’arc peuvent réagir avec les vapeurs du solvant pour produire du phosgène (gas fortement toxique) ou autres produits irritants.

PRÉCAUTIONS DE SÛRETÉ POUR LES MACHINES À SOUDER À TRANSFORMATEUR ET À REDRESSEUR

1. **Relier à la terre le chassis du poste conformément au code de l’électricité et aux recommandations du fabricant.** Le dispositif de montage ou la pièce à souder doit être branché à une bonne mise à la terre.

2. **Autant que possible, l’installation et l’entretien du poste seront effectués par un électricien qualifié.**

3. **Avant de faire des travaux à l’intérieur de poste,** la debrancher à l’interrupteur à la boîte de fusibles.

4. **Garder tous les couvercles et dispositifs de sûreté à leur place.**
Thank You for selecting a QUALITY product by Lincoln Electric. We want you to take pride in operating this Lincoln Electric Company product as much pride as we have in bringing this product to you!

CUSTOMER ASSISTANCE POLICY
The business of The Lincoln Electric Company is manufacturing and selling high quality welding equipment, consumables, and cutting equipment. Our challenge is to meet the needs of our customers and to exceed their expectations. On occasion, purchasers may ask Lincoln Electric for advice or information about their use of our products. We respond to our customers based on the best information in our possession at that time. Lincoln Electric is not in a position to warrant or guarantee such advice, and assumes no liability, with respect to such information or advice. We expressly disclaim any warranty of any kind, including any warranty of fitness for any customer's particular purpose, with respect to such information or advice. As a matter of practical consideration, we also cannot assume any responsibility for updating or correcting any such information or advice once it has been given, nor does the provision of information or advice create, expand or alter any warranty with respect to the sale of our products.

Lincoln Electric is a responsive manufacturer, but the selection and use of specific products sold by Lincoln Electric is solely within the control of, and remains the sole responsibility of the customer. Many variables beyond the control of Lincoln Electric affect the results obtained in applying these types of fabrication methods and service requirements.

Subject to Change – This information is accurate to the best of our knowledge at the time of printing. Please refer to www.lincolnelectric.com for any updated information.

Please Examine Carton and Equipment For Damage Immediately
When this equipment is shipped, title passes to the purchaser upon receipt by the carrier. Consequently, Claims for material damaged in shipment must be made by the purchaser against the transportation company at the time the shipment is received.

Please record your equipment identification information below for future reference. This information can be found on your machine nameplate.

Product __
Model Number __
Code Number or Date Code __
Serial Number __
Date Purchased ___
Where Purchased ___

Whenever you request replacement parts or information on this equipment, always supply the information you have recorded above. The code number is especially important when identifying the correct replacement parts.

On-Line Product Registration
- Register your machine with Lincoln Electric either via fax or over the Internet.
 • For faxing: Complete the form on the back of the warranty statement included in the literature packet accompanying this machine and fax the form per the instructions printed on it.
 • For On-Line Registration: Go to our WEB SITE at www.lincolnelectric.com. Choose “Support” and then “Register Your Product”. Please complete the form and submit your registration.

Read this Operators Manual completely before attempting to use this equipment. Save this manual and keep it handy for quick reference. Pay particular attention to the safety instructions we have provided for your protection. The level of seriousness to be applied to each is explained below:

⚠️ WARNING
This statement appears where the information must be followed exactly to avoid serious personal injury or loss of life.

⚠️ CAUTION
This statement appears where the information must be followed to avoid minor personal injury or damage to this equipment.
TABLE OF CONTENTS

Installation

- Technical Specifications .. Section A, A-1
- Safety Precautions ... A-2
- Location .. A-2
- Mounting ... A-2
- Weld Cable Sizing ... A-2
- Weld Cable Connection .. A-2
- Coaxial Weld Cables .. A-3
- Weld Cable Sizes ... A-3
- Changing Electrode Polarity ... A-4
- Negative Electrode Polarity .. A-4
- Cables ... A-5
 - Digital Control Cable ... A-5
 - Welding gun/Wire Feeder Trigger Connector A-5
- Wire Drive Systems .. A-6
 - Changing Drive Rolls and Wire Guides A-6
 - Drive Roll Pressure Setting .. A-7
 - Changing The Gun Receiver Bushing A-7
 - Welding Gun Torch and Accessories A-8
 - Wire Feed Shut Down Circuit A-9
 - Changing the Gear Ratio ... A-9
 - Wire Reel Loading .. A-10 thru A-12
- Shielding Gas Connection .. A-13
- Examples of Connecting an Arclink Power Wave System ... A-14

Operation

- Safety Precautions ... Section B, B-1
- Graphic Symbols .. B-1
- Definitions of Welding Modes .. B-1
- Product Description .. B-2
 - Bench Model Features .. B-3
 - Basic POWER FEED® 10M Single Wire Feeder Welding System Configuration ... B-3
- Front Panel Controls and Connections B-4
 - 1. Status LED .. B-5
 - 2. Digital Meters and Output Encoder Knobs B-5
 - A. Wire Feed Speed/Ammeter display and output Knob ... B-5
 - B. Volts/Trim display and Output Knob B-6
 - Synergic CV Voltage Display B-6
 - Overview: .. B-7
 - 3. Mode Select Panel 4 (MSP4) B-7
 - Layout-Controls .. B-7
 - Layout-Digital Displays .. B-7
 - Power-up Sequence .. B-8
 - Changing Weld Modes .. B-8
 - Changing Arc Wave Control .. B-8
 - Changing Weld Sequence Behavior B-8
 - Infrared (IR) Control .. B-8
 - Lockout/security ... B-8
 - Limit Setting .. B-9
 - Machine Setup/user preferences B-9
 - Accessing the Machine Setup Menu B-9
 - Setup Features Menu .. B-10 thru B-17
 - 4. Cold Feed / Gas Purge Switch B-18
 - 5. 2-Step/4- 4 Step Trigger Switch Operations B-18, thru B-20
 - Process Set-Up and Operation B-21
 - Steel and Stainless Synergic GMAW-P (Pulsed MIG) Welding B-22
 - Arc Control .. B-22
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>vii</td>
</tr>
<tr>
<td>Aluminum Synergic GMAW-P (Pulsed MIG) and GMAW-PP (Pulse on Pulse) Welding</td>
<td>B-23</td>
</tr>
<tr>
<td>Machine Functionality by Weld Process</td>
<td>B-24 thru B-29</td>
</tr>
<tr>
<td>GTAW (TIG) Welding</td>
<td>B-29</td>
</tr>
<tr>
<td>Weld Mode Searching</td>
<td>B-30</td>
</tr>
<tr>
<td>User Memories</td>
<td>B-30</td>
</tr>
<tr>
<td>6. Optional Dual Procedure/Memory Panel Operation</td>
<td>B-31</td>
</tr>
<tr>
<td>Limit Settings</td>
<td>B-31, B-32</td>
</tr>
<tr>
<td>Accessories</td>
<td>C-1 thru C-3</td>
</tr>
<tr>
<td>General Options / Accessories</td>
<td>C-1 thru C-3</td>
</tr>
<tr>
<td>Maintenance</td>
<td>D-1</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>D-1</td>
</tr>
<tr>
<td>Routine</td>
<td>D-1</td>
</tr>
<tr>
<td>Periodic</td>
<td>D-1</td>
</tr>
<tr>
<td>Calibration Specification</td>
<td>D-1</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>E-1</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>E-1</td>
</tr>
<tr>
<td>How to Use Troubleshooting Guide</td>
<td>E-1</td>
</tr>
<tr>
<td>Troubleshooting Guide</td>
<td>E-2 thru E-7</td>
</tr>
<tr>
<td>Wiring Diagram and Dimension Print</td>
<td>P-549</td>
</tr>
<tr>
<td>Parts Lists</td>
<td>P-549</td>
</tr>
</tbody>
</table>
TECHNICAL SPECIFICATIONS: POWER FEED® 10M Single Wire Feeder

WIRE DRIVE OR WIRE DRIVE SECTION OF FEEDER

<table>
<thead>
<tr>
<th>SPEC.#</th>
<th>TYPE</th>
<th>Wire Size Low Speed Solid</th>
<th>Wire Size Cored</th>
<th>Wire Size High Speed Solid</th>
<th>Wire Size Cored</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2230-2</td>
<td>Bench Model</td>
<td>50-800 IPM (1.27-20.3 m/m)</td>
<td>.025 - 1/16 in. (0.6 - 1.6 mm)</td>
<td>.035 - 5/64 in (0.9 - 2.0 mm)</td>
<td>75 - 1200 IPM (2.0 - 30.5 m/m)</td>
</tr>
</tbody>
</table>

CONTROL BOX, WIRE DRIVE AND COMPLETE UNITS

<table>
<thead>
<tr>
<th>SPEC.#</th>
<th>TYPE</th>
<th>INPUT POWER</th>
<th>PHYSICAL SIZE</th>
<th>TEMPERATURE RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dimensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Height</td>
<td>Width</td>
<td>Depth</td>
</tr>
<tr>
<td>K2230-2</td>
<td>Bench Model</td>
<td>Wire Drive & Reel Stand</td>
<td>18.5° (470 mm)</td>
<td>13.5° (345 mm)</td>
</tr>
</tbody>
</table>

WELDING CAPACITY RATING

<table>
<thead>
<tr>
<th>Amp Rating</th>
<th>Duty Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 A</td>
<td>60%</td>
</tr>
<tr>
<td>500 A</td>
<td>100%</td>
</tr>
</tbody>
</table>

△ Dimensions do not include wire reel.
SAFETY PRECAUTION

ELECTRIC SHOCK can kill.
• Only qualified personnel should perform this installation.
• Turn off the input power to the power source at the disconnect switch or fuse box before working on this equipment. Turn off the input power to any other equipment connected to the welding system at the disconnect switch or fuse box before working on this equipment.
• Do not touch electrically hot parts.

LOCATION

• The POWER FEED® 10M Single Wire Feeder has an IP21 rating, suitable for indoor use.
• The POWER FEED® 10M Single Wire Feeder should be operated in a substantially upright position.
• Do not submerge the POWER FEED® 10M Single Wire Feeder.
• The POWER FEED® 10M Single Wire Feeder is not suitable for stacking.

Locate the POWER FEED® 10M Single Wire Feeder away from radio controlled machinery. The normal operation of the POWER FEED® 10M Single Wire Feeder may adversely affect the operation of RF controlled equipment, which may result in bodily injury or damage to the equipment.

WELD CABLE SIZING

Minimum work and electrode cable sizes as follows:

<table>
<thead>
<tr>
<th>Current (60% Duty Cycle)</th>
<th>MINIMUM COPPER WORK CABLE SIZE AWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 Amps</td>
<td>Up To-100 Ft. Length (30 m)</td>
</tr>
<tr>
<td>500 Amps</td>
<td>2/0 (67 mm²)</td>
</tr>
<tr>
<td>600 Amps</td>
<td>3/0 (85 mm²)</td>
</tr>
</tbody>
</table>

WELD CABLE CONNECTION

Connect a work lead of sufficient size and length (Per Table A.1) between the proper output terminal on the power source and the work. Be sure the connection to the work makes tight metal-to-metal electrical contact. To avoid interference problems with other equipment and to achieve the best possible operation, route all cables directly to the work or wire feeder. Avoid excessive lengths and do not coil excess cable.

When using an inverter type power source like the Power Waves®, use the largest welding (electrode and work) cables that are practical. At least 2/0 copper wire - even if the average output current would not normally require it. When pulsing, the pulse current can reach very high levels. Voltage drops can become excessive, leading to poor welding characteristics, if undersized welding cables are used.

For Electrode Polarity: Connect the Electrode lead to Connect the work lead to
| Positive | Positive Stud | Negative |
| Negative | Negative Stud | Positive Stud |

For additional Safety information regarding the electrode and work cable set-up, see the standard "SAFETY INFORMATION" located in the front of the Instruction Manuals.
Excessive voltage drops caused by poor work piece connections often result in unsatisfactory welding performance.

COAXIAL WELD CABLES

Coaxial welding cables are specially designed welding cables for STT™ and pulse welding. Coaxial weld cables feature low inductance, allowing fast changes in the weld current. Regular cables have a higher inductance which may distort the STT™ waveshape. Inductance becomes more severe as the weld cables become longer.

Coaxial weld cables are recommended for STT™ welding, especially when the total weld cable length (electrode cable + work cable) exceeds 50 feet (7.6m).

A coaxial weld cable is constructed with multiple small leads wrapped around one large lead. The large inner lead connects to the electrode stud on the power source and the electrode connection on the wire feeder. The small leads combine together to form the work lead, one end attached to the power source and the other end to the work piece.

To install: (See Figure A.2)

1. Turn the input power off at the welding power source.
2. Connect one end of the center lead to the power source electrode connection, and the other end to the wire feeder electrode connection.
3. Connect the outer lead bundle to the power source work connection, and the other end to the work piece. Minimize the length of any work lead extension for best results.
4. Insulate all connections.

** Tabled values are for operation at ambient temperatures of 40°C and below. Applications above 40°C may require cables larger than recommended, or cables rated higher than 75°C.

![Figure A.2](image-url)
CHANGING ELECTRODE POLARITY

SETTING

The POWER FEED® 10M Single Wire Feeder is preset at the factory for Electrode Positive welding. (See Figure A.3)

NOTE: Changing this DIP Switch does not change the actual welding polarity. The actual welding polarity is changed by reversing the welding cables at the power source output studs.

This DIP Switch setting must coincide with the polarity you are setting up to weld with for the feeder to operate correctly. Operating the POWER FEED® 10M Single Wire Feeder with the DIP switch in the wrong position will cause very erratic weld characteristics.

NEGATIVE ELECTRODE POLARITY

This options allows for the setting of negative polarity sensing when a negative polarity welding process is performed.

When negative electrode polarity is required, such as in some Innershield applications, reverse the output connections at the power source (electrode cable to the negative (-) stud, and work cable to the positive (+) stud).

When operating with electrode polarity negative the POWER FEED® 10M Single Wire Feeder must be set to recognize this set-up. (See Figure A.3)

<table>
<thead>
<tr>
<th>DIP Switch #7 Position</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>(negative) - polarity</td>
</tr>
<tr>
<td>OFF</td>
<td>(positive) + polarity</td>
</tr>
</tbody>
</table>

FIGURE A.3

To change the electrode polarity DIP Switch setting:

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
</table>

• Do not touch electrically live parts or electrodes with your skin or wet clothing.

• Insulate yourself from the work and ground.

• Always wear dry insulating gloves.

1. Turn off power at the welding power source.

2. Remove the rear access panel on the wire drive.

3. Locate the DIP switches on the Wire Drive Board.

4. Set DIP switch #7 to the desired polarity.

5. Reinstall the rear access panel and restore power.
CABLES
Digital Control Cable, K1543-xx

ArcLink/LincNet control cables are special high quality cables for digital communication. The cables are copper 5 conductor cable in a SO-type rubber jacket. There is one 20 gauge twisted pair for network communications. This pair has an impedance of approximately 120 ohms and a propagation delay per foot of less than 2.1 nanoseconds. There are two 12 gauge conductors that are used to supply 40VDC to the network. The fifth wire is 18 gauge and is used as an electrode sense lead.

Use of non-standard cables may lead to system shutdowns, poor arc starting and wire feeding problems.

The control cables connect the power source to the wire feeder, and the wire feeder to other wire feeders.

Control cables may be connected end to end to extend their length. Use a maximum of 200 feet (61 m) of control cable between components.

<table>
<thead>
<tr>
<th>Power Source</th>
<th>Wire Feeder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Function</td>
</tr>
<tr>
<td>A</td>
<td>ArcLink</td>
</tr>
<tr>
<td>B</td>
<td>ArcLink</td>
</tr>
<tr>
<td>C</td>
<td>67 voltage sense</td>
</tr>
<tr>
<td>D</td>
<td>40 VDC</td>
</tr>
<tr>
<td>E</td>
<td>Common</td>
</tr>
</tbody>
</table>
WIRE DRIVE SYSTEMS

Drive Roll Kits are designed to feed specific types and wire sizes. The POWER FEED® 10M Single Wire Feeder does not include these Drive Roll Kits with this Wire Drive, but are available for ordering from the following tables:

Drive Roll Kits, Steel Wires
Includes: 4 Smooth V groove drive rolls and an inner wire guide.

<table>
<thead>
<tr>
<th>KP1505-030S</th>
<th>.023-.030 (0.6-0.8mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP1505-035S</td>
<td>.035 (0.9mm)</td>
</tr>
<tr>
<td>KP1505-040S</td>
<td>.040 (1.0mm)</td>
</tr>
<tr>
<td>KP1505-045S</td>
<td>.045 (1.2mm)</td>
</tr>
<tr>
<td>KP1505-052S</td>
<td>.052 (1.4mm)</td>
</tr>
<tr>
<td>KP1505-1/16S</td>
<td>1/16 (1.6mm)</td>
</tr>
</tbody>
</table>

Drive Roll Kits, Cored Wires
Includes: 4 Knurled drive rolls and an inner wire guide.

<table>
<thead>
<tr>
<th>KP1505-035C</th>
<th>.030-.035" (0.8-0.9mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP1505-045C</td>
<td>.040-.045" (1.0-1.2mm)</td>
</tr>
<tr>
<td>KP1505-052C</td>
<td>.052" (1.4mm)</td>
</tr>
<tr>
<td>KP1505-1/16C</td>
<td>1/16" (1.6mm)</td>
</tr>
</tbody>
</table>

Drive Roll Kits, Steel or Cored Wires
Includes: 4 Knurled drive rolls and an inner wire guide.

<table>
<thead>
<tr>
<th>KP1505-068</th>
<th>.068-.072" (1.8mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP1505-5/64</td>
<td>5/64" (2.0mm)</td>
</tr>
<tr>
<td>KP1505-3/32</td>
<td>3/32" (2.4mm)</td>
</tr>
<tr>
<td>KP1505-7/64</td>
<td>7/64" (2.8mm)</td>
</tr>
<tr>
<td>KP1505-.120</td>
<td>.120" (3.2mm)</td>
</tr>
</tbody>
</table>

Drive Roll Kits, Hardfacing Wires
Includes: 2 Knurled drive rolls, 2 Smooth V groove drive rolls and an inner wire guide.

- KP1505-7/64C 7/64" (2.8mm)

Drive Roll Kits, Aluminum Wire
Includes: 4 polished U groove drive rolls, outer wire guide and an inner wire guide.

<table>
<thead>
<tr>
<th>KP1507-035A</th>
<th>.035" (0.9 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP1507-040A</td>
<td>.040" (1.0mm)</td>
</tr>
<tr>
<td>KP1507-3/64A</td>
<td>3/64" (1.2mm)</td>
</tr>
<tr>
<td>KP1507-1/16A</td>
<td>1/16" (1.6mm)</td>
</tr>
<tr>
<td>KP1507-3/32A</td>
<td>3/32" (2.4mm)</td>
</tr>
</tbody>
</table>

CHANGING DRIVE ROLLS AND WIRE GUIDES

FIGURE A.4

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inner Wire Guide</td>
</tr>
<tr>
<td>2</td>
<td>Drive Rolls</td>
</tr>
<tr>
<td>3</td>
<td>Outer Wire Guide</td>
</tr>
</tbody>
</table>

To change drive rolls and wire guides:

1. Turn off power at the welding power source.
2. Open wire drive door.
3. Remove the outer wire guide. (Item #3)
4. Remove the 4 drive rolls (Item #2) by pulling them straight off of the drive hub. Rock the upper drive rolls back for ease of removal.
5. Remove the inner wire guide (Item #1).
6. Insert the new inner wire guide (Item #1) over the locating pins of the feed plate.
7. Install each drive roll by pushing it onto the hub until it fully seats.
8. Install the outer wire guide.
9. Swing the upper drive rolls down and close the wire drive door.
To change the gun bushing:

1. Turn off power at the welding power source.
2. Remove the welding wire from the wire drive.
3. Remove the thumb screw from the wire drive.
4. Remove the welding gun from the wire drive.
5. Loosen the socket head cap screw that holds the connector bar against the gun bushing. Important: Do not attempt to completely remove the socket head cap screw.
6. Remove the outer wire guide, and push the gun bushing out of the wire drive. Because of the precision fit, light tapping may be required to remove the gun bushing.
7. Disconnect the shielding gas hose from the gun bushing, if required.
8. Connect the shielding gas hose to the new gun bushing, if required.
9. Rotate the gun bushing until the thumb screw hole aligns with the thumb screw hole in the feed plate. Slide the gun receiver bushing into the wire drive and verify the thumb screw holes are aligned.

Note: Some gun bushings do not require the use of the thumb screw.

10. Tighten the socket head cap screw.

11. Insert the welding gun into the gun bushing and tighten the thumb screw.

<table>
<thead>
<tr>
<th>Gun Receiver Bushing</th>
<th>For use With</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1500-1</td>
<td>K466-1 Lincoln gun connectors; Innershield and Subarc guns</td>
</tr>
<tr>
<td>K1500-2</td>
<td>K466-2, K466-10 Lincoln gun connectors; Magnum 200/300/400 guns and compatible with Tweco® #4</td>
</tr>
<tr>
<td>K1500-3</td>
<td>K1637-7 Lincoln gun connectors; Magnum 550 guns and compatible with Tweco® #5</td>
</tr>
<tr>
<td>K1500-4</td>
<td>K466-3 Lincoln gun connectors; compatible with Miller® guns</td>
</tr>
<tr>
<td>K1500-5</td>
<td>Compatible with Oxo® guns</td>
</tr>
<tr>
<td>K489-9</td>
<td>Lincoln Fast-Mate guns</td>
</tr>
</tbody>
</table>
WELDING GUNS, TORCHES AND ACCESSORIES

GUN RECEIVER BUSHING
The POWER FEED® 10M Single Wire Feeder comes with a K1500-2 gun receiver bushing, for use with the Magnum gun with a K466-10 connector kit.

MAGNUM GUN AND CABLE ASSEMBLIES
The POWER FEED® 10M Single Wire Feeder model will accept a number of optional gun and cable assemblies. An example of installing the Gun and Cable is shown in Figure A.5a with a 15 ft. (4.6m) long Magnum gun and cable.

1. Turn off power at the welding power source.

2. Unscrew Thumb screw on Wire Drive Unit, until tip of screw no longer protrudes into gun bushing hole as seen from the front of machine.

3. Fully insert the gun cable connector end into the gun receiver bushing and gently tighten the thumb screw as shown in Figure A.5a below.

4. Connect the gun trigger connector to the trigger receptacle. Make sure that the key ways are aligned, insert and tighten retaining ring.
WIRE FEED SHUT DOWN CIRCUIT

The wire feed shut down circuit is used to stop the wire feed in the event of a fault. The most common use of the circuit is with water cooled guns. A flow sensor is connected to the circuit to protect the welding gun if the water flow is interrupted.

The POWER FEED® 10M Single Wire Feeder has two leads, 570A and 570B, located inside the wire drive that are electrically common. If flow switch is used, separate these leads and connect to normally closed flow switch terminals when water is flowing. Connect the flow sensor to these two leads.

CHANGING THE GEAR RATIO

The POWER FEED® 10M Single Wire Feeder wire drive may be configured for either low speed or high speed, depending upon the application. The wire feeders are factory assembled for low speed operation and include a gear for high speed operation.

<table>
<thead>
<tr>
<th>Gear Ratio</th>
<th>Purpose:</th>
<th>Speed</th>
<th>Wire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Speed</td>
<td>Solid</td>
</tr>
<tr>
<td>Low Speed</td>
<td>Best for most GMAW and FCAW welding. The low speed gear ratio provides the most force for pushing wires through long guns or pulling wire through conduits.</td>
<td>50-800 ipm (1.27-20.3 m/m)</td>
<td>.025-1/16in. (0.6 - 1.6 mm)</td>
</tr>
<tr>
<td>High Speed</td>
<td>Suitable only for small diameter wires operating at high wire feed speeds. Feeding force is less.</td>
<td>75-1200 ipm (2.03-30.5 m/m)</td>
<td>.025-.045 in (0.6 - 1.2 mm)</td>
</tr>
</tbody>
</table>

To change the gear ratio:

1. Turn off power at the welding power source.
2. Open the wire drive door.
3. Use a 3/16" Allen wrench to remove the screws holding the feed plate to the wire feeder.
4. Use a Phillips screwdriver to remove the screw and washers holding the gear to the shaft.
5. Remove the gear.
6. Lightly cover the shaft with engine oil or equivalent. Install the desired gear onto the shaft.
7. Reassemble the screw and washers securing the gear to the shaft.
8. Reassemble the screws in the appropriate position for holding the feed plate to the wire feeder.
WIRE REEL LOADING

Spindle Placement
The wire reel stand provides two mounting locations for the spindle. Each mounting location consists of a tube in the center of the mast and locating slots.

Loading 16 to 44 lb. (7.3 – 20kg) Spools
1. Squeeze the release bar on the retaining collar and remove it from the spindle.
2. Place the spool on the spindle, aligning the spindle brake pin with one of the holes in the back side of the spool. An indicator mark on the end of the spindle shows the orientation of the brake holding pin. Be certain the wire feeds off of the spool in the proper direction.
3. Re-install the retaining collar. Make sure that the release bar snaps out and that the retaining collar fully engages the groove on the spindle.

Loading 10 to 15 lb. (4.5 – 6.8kg) Spools
A K468 spindle adapter is required for loading 2" wide spools on 2" (51mm) spindles. Use a K468 spindle adapter for loading 2-1/2" (64mm) wide spools.
1. Squeeze the release bar on the retaining collar and remove it from the spindle.
2. Place the spindle adapter on the spindle, aligning the spindle brake pin with the hole in the adapter.
3. Place the spool on the spindle and align the adapter brake tab with one of the holes in the back side of the spool. An indicator mark on the end of the spindle shows the orientation of the brake tab. Be certain the wire feeds off of the spool in the proper direction.
4. Re-install the retaining collar. Make sure that the release bar snaps out and that the retaining collar fully engages the groove on the spindle.

DIP Switch #8 Position	Gear Ratio
ON | High speed
OFF | Low speed (default)

12. Remove the rear access panel on the wire drive.
13. Locate DIP switches on the Wire Drive Board.
14. Set DIP switch #8 to the desired setting.
15. Reinstall the rear access panel to the wire drive.
16. Restore power.
Using K1504-1 Coil Reel
50-60 lb. (22.7 - 27.2 kg) Coil Mounting
(See Figure A.10)

1. Make sure the spindle of the wire reel stand is in the upper position.

2. With the coil reel assembly mounted to a 2" (51mm) spindle, loosen the spinner nut and remove the cover plate. Alternatively, lay the coil reel assembly flat on the floor and loosen the spinner nut and remove the cover plate.

3. Place the coil of electrode on the reel so it unwinds from the bottom as it rotates.

4. Tighten the spinner nut as much as possible by hand using the cover plate spokes for leverage. DO NOT hammer on the spinner nut.

5. Cut and remove only the tie wire holding the free end of the coil. Hook the free end around the rim of the cover plate and secure it by wrapping it around. Cut and remove remaining tie wires.

- Always be sure the free end of the coil is securely held while the tie wires are being cut and until the wire is feeding through the drive rolls. Failure to do this will result in "backlashing" of the coil, which may tangle the wire. A tangled coil will not feed and must either be untangled or discarded.

6. Be sure the coil is engaged with the spindle brake pin and the release bar on the retaining collar "pops up". The retaining collar must fully engage the retaining groove on the spindle.
Loading 30 lb. (13.6 kg) Readi-Reels
(See Figure A.11)

A K363-P Readi-Reel adapter is required for loading these spools on 2" (51mm) spindles.

1. Squeeze the release bar on the retaining collar and remove it from the spindle.

2. Place the Readi-Reel adapter on the spindle, aligning the spindle brake pin with one of the holes in the adapter.

3. Re-install the retaining collar. Make sure that the release bar snaps out and that the retaining collar fully engages the groove on the spindle.

4. Rotate the spindle and adapter until the retaining spring is at the 12 o’clock position.

5. Position the Readi-Reel so that electrode de-reels in the proper direction.

6. Set one of the Readi-Reel inside cage wires on the slot in the retaining spring.

7. Lower the Readi-Reel to depress the retaining spring and align the other inside cage wires with the grooves in the adapter.

8. Slide the cage all way onto the adapter until the retaining spring "pops up" fully.

Removing a Readi-Reel

1. To remove a Readi-Reel from the an adapter, depress the retaining spring with a thumb while pulling the Readi-Reel cage from the adapter with both hands. Do not remove the adapter from the spindle.

WELD WIRE ROUTING

The electrode supply may be either from reels, Readi-Reels, spools, or bulk packaged drums or reels. Observe the following precautions:

a) The electrode must be routed to the wire drive unit so that the bends in the wire are at a minimum, and also that the force required to pull the wire from the reel into the wire drive unit is kept at a minimum.

b) The electrode is “hot” when the gun trigger is pressed and must be insulated from the boom and structure.

c) If more than one wire feed unit shares the same boom and are not sharing the same power source output stud, their wire and reels must be insulated from each other as well as insulated from their mounting structure.
SHIELDING GAS CONNECTION

WARNING

CYLINDER may explode if damaged.
- Keep cylinder upright and chained to a support.
- Keep the cylinder away from all areas where it may be damaged.
- Never lift the welder with cylinder attached.
- Never allow the welding electrode to touch cylinder.
- Keep the cylinder away from welding or other live electrical circuits.

BUILDUP OF SHIELDING GAS may harm health or kill.
- Shut off the shielding gas supply when it is not in use.

SEE AMERICAN NATIONAL STANDARD Z-49.1, "SAFETY IN WELDING AND CUTTING" PUBLISHED BY THE AMERICAN WELDING SOCIETY.

Maximum inlet pressure is 100 psi. (6.9 bar.)

Install the shielding gas supply as follows:

1. Secure the cylinder to prevent it from falling.

2. Remove the cylinder cap. Inspect the cylinder valves and regulator for damaged threads, dirt, dust, oil or grease. Remove dust and dirt with a clean cloth. DO NOT ATTACH THE REGULATOR IF OIL, GREASE OR DAMAGE IS PRESENT! Inform your gas supplier of this condition. Oil or grease in the presence of high pressure oxygen is explosive.

3. Stand to one side away from the outlet and open the cylinder valve for an instant. This blows away any dust or dirt which may have accumulated in the valve outlet.

4. Attach the flow regulator to the cylinder valve and tighten the union nut(s) securely with a wrench. Note: if connecting to 100% CO2 cylinder, insert regulator adapter between regulator and cylinder valve. If adapter is equipped with a plastic washer, be sure it is seated for connection to the CO2 cylinder.

5. Attach one end of the inlet hose to the outlet fitting of the flow regulator. Attach the other end to the welding system shielding gas inlet. Tighten the union nuts with a wrench.

6. Before opening the cylinder valve, turn the regulator adjusting knob counterclockwise until the adjusting spring pressure is released.

7. Standing to one side, open the cylinder valve slowly a fraction of a turn. When the cylinder pressure gage stops moving, open the valve fully.

8. The flow regulator is adjustable. Adjust it to the flow rate recommended for the procedure and process being used before making a weld.
EXAMPLES OF CONNECTING AN ARC LINK POWER WAVE SYSTEM

ArcLink Power Wave® products may be configured in many different ways. The flexible system allows multiple wire feeders to be connected to the same power source. The diagrams represent some of the common methods for connecting ArcLink Products.

Important: Bench model wire feeders cannot be separated into a separate control box and wire drive for a boom system.

Common ArcLink Systems
The following Power Wave® systems may all be assembled without any changes to the equipment DIP switches

Basic Semi-Automatic System
• Great for general fabrication.

Shown with
• K2230-2 POWER FEED® 10M Single Wire Feeder
• K2203-1 Power Wave® 455M/STT

Robotic/Semi-Automatic System
• Use the bench feeder for offline welding.

Shown with
• K2230-2 POWER FEED® 10M Single Wire Feeder
• K1780-2 PF-10/R
• K2203-1 Power Wave® 455M/STT
• K2205-1 Wire Drive Module

Hard Automation System

Shown with
• K2657-1 Control Box
• K1780-2 PF-10/R
• K2203-1 Power Wave® 455M/STT
• K2205-1 Wire Drive Module

Multiple Wire Feeder System
• Load one feeder with solid wire, the other with flux cored.
• Great for pipeline work.

Shown with
• K2429-1 ArcLink T Cable Connector
• K2536-1
• K2536-1 Power Feed® 25M
• K2203-1 Power Wave® 455M/STT

ArcLink Systems
Many other ArcLink systems may be assembled besides those shown in this manual. The majority will self configure. If an assembled system flashes the status light green rapidly on all components, contact the Lincoln Electric Company for further assistance.

Current Power Feed® 10M models that will not self configure...

• K2316-1 Power Feed 10M Dual Boom

These configurations will require Dip Switches to be set. See the power source instruction manual on how to disable self configuration.

POWER FEED® 10M SINGLE WIRE FEEDER
SAFETY PRECAUTIONS

Read this entire section of operating instructions before operating the machine.

WARNING

ELECTRIC SHOCK can kill.

• Do not touch electrically live parts or electrodes with your skin or wet clothing.
• Insulate yourself from the work and ground.
• Always wear dry insulating gloves.
• Do not use AC welder if your clothing, gloves or work area is damp or if working on, under or inside workpiece.

Use the following equipment:
- DC manual (stick) welder.
- AC welder with reduced voltage control.
• Do not operate with panels removed.
• Disconnect input power before servicing.

READ THIS WARNING, PROTECT YOURSELF & OTHERS.

FUMES AND GASES can be dangerous.

• Keep your head out of fumes.
• Use ventilation or exhaust at the arc, or both, to keep fumes and gases from your breathing zone and general area.

WELDING SPARKS can cause fire or explosion.

• Do not weld near flammable material.
• Do not weld on containers which have held flammable material.

ARC RAYS can burn.

• Wear eye, ear, and body protection.

ONLY QUALIFIED PERSONS SHOULD INSTALL, USE OR SERVICE THIS EQUIPMENT. READ AND FOLLOW THE MANUFACTURER’S INSTRUCTIONS, EMPLOYER’S SAFETY PRACTICES AND MATERIAL SAFETY DATA SHEETS (MSDS) FOR CONSUMABLES.

GRAPHIC SYMBOLS THAT APPEAR ON THIS MACHINE OR IN THIS MANUAL

- WIRE FEEDER
- POSITIVE OUTPUT
- NEGATIVE OUTPUT
- PROTECTIVE GROUND
- WARNING OR CAUTION

DEFINITIONS OF WELDING MODES

NON-SYNERGIC WELDING MODES

• A Non-synergic welding mode requires all welding process variables to be set by the operator.

SYNERGIC WELDING MODES

• A Synergic welding mode offers the simplicity of single knob control. The machine will select the correct voltage and amperage based on the wire feed speed (WFS) set by the operator.

COMMON WELDING ABBREVIATIONS

WFS - (Wire Feed Speed)
CC - (Constant Current)
CV - (Constant Voltage)
GMAW (MIG) - (Gas Metal Arc Welding)
GMAW-P (MIG) - (Gas Metal Arc Welding)-(Pulse)
GMAW-PP (MIG)- (Gas Metal Arc Welding)-(Pulse-on-Pulse)
GTAW (TIG) - (Gas Tungsten Arc Welding)
SMAW (STICK) - (Shielded Metal Arc Welding)
FCAW (Innershield or Outershield) - (Flux Core Arc Welding)
HF - (High Frequency)
CAG - (Carbon Arc Gouging)
PRODUCT DESCRIPTION

General Physical Description

The POWER FEED® 10M Single Wire Feeder is a modular wire feeder, consisting of two components - a wire drive and a control box - are available assembled as a bench unit or as a boom system. High speed, highly reliable digital cables connect the components together and to the Power Wave power source.

The POWER FEED® 10M Single Wire Feeder system has the ability to connect multiple wire feeders to one power source, use the same power source to weld in two different locations (not simultaneously), or load a different electrode on each feeder to eliminate change over time.

The powerful four roll wire drive system sets the industry standard for ease of use. Its patented design allows for tool-less change out of wire guides and drive rolls greatly reducing set up time.

General Functional Description

• The POWER FEED® 10M Single Wire Feeder is a highly versatile wire feeder with easy to use features that make it easy for the operator to adjust the arc for specific preferences.

• The new MSP4 panel clearly displays key welding information. Use the MSP4 panel to quickly adjust weld settings, arc starting parameters, arc end parameters and set-up variables.

(For Codes 11377 and below)
• The POWER FEED® 10M Single Wire Feeder wire feeder is provided with an infrared red (IR) port. Transferring welding settings from one wire feeder to another is accomplished with a common palm computer.

• When the POWER FEED® 10M Single Wire Feeder is coupled to a Power Wave welding power source, the result is a welding system with absolutely superior arc performance.

RECOMMENDED PROCESSES

The POWER FEED® 10M Single Wire Feeder is well suited for all MIG welding processes, giving premium arc performance especially with unusual alloys and out of position work.

• GMAW
• GMAW-Pulse
• GMAW-STT
• FCAW
• SMAW
• GTAW (Touch Start TIG only)
• CAG

PROCESS LIMITATIONS

The POWER FEED® 10M Single Wire Feeder is not suitable for:
• SAW
• GTAW with HF

Not all weld modes or processes described in this manual are available on all Power Wave® power sources.

REQUIRED EQUIPMENT

Lincoln’s POWER FEED® 10M Single Wire Feeder is designed for use with the Power Wave family of power sources. These include:

• Power Wave® 355
• Power Wave® 455
• Power Wave® 455/STT
• Power Wave® 455M
• Power Wave® 455M STT
• Power Wave® 455M CE
• Power Wave® 455M STT CE
• Power Wave® 655

ADDITIONAL REQUIRED EQUIPMENT

• Drive Roll Kits
• Control Cables
• Gun and Cable Assembly
• Weld Wire
• Shielding gas
• Work Cable and Clamp

EQUIPMENT LIMITATIONS

• The POWER FEED® 10M Single Wire Feeder does not operate with the Power Wave® 450.
• The POWER FEED® 10M Single Wire Feeder does not operate with any analog based power sources (CV-xxx machines, DC-xxx machines, etc.)
• The Memory Panel is required to set procedure limits.
• The Boom model does not support push-pull guns or GTAW welding.
• A push-pull gun and foot amptrol may not be plugged into the POWER FEED® 10M Single Wire Feeder at the same time.
• Spool guns do not operate with the Power Feed® 10M.
BENCH MODEL FEATURES

SPINDLE ASSEMBLY

CONTROL BOX

ROLL BAR

WIRE DRIVE

REEL STAND AND BASE ASSEMBLY

BASIC POWER FEED® 10M Single Wire Feeder WELDING SYSTEM CONFIGURATION

CV Welding:
Pulse Welding or STT Welding:
FRONT PANEL CONTROLS AND CONNECTIONS

CASE FRONT CONTROLS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Status LED indicates system status.</td>
</tr>
<tr>
<td>2</td>
<td>Digital Meter Display is a bright LED display of key welding information. Adjusting Parameter Knobs.</td>
</tr>
<tr>
<td>3</td>
<td>MSP4 Panel is used to set the weld mode, adjust the arc, change arc start/end parameters and for set-up information.</td>
</tr>
<tr>
<td>4</td>
<td>Cold Feed - Gas Purge Switch, press the switch up to feed wire with weld output off. Press the switch down for gas flow with weld output off.</td>
</tr>
<tr>
<td>5</td>
<td>2 step - 4 step Switch is used to choose between a 2 step trigger or a 4 step trigger operation.</td>
</tr>
<tr>
<td>6</td>
<td>Location for Optional Memory Panel. (Order K2360-1 for the memory panel. See Accessories Section).</td>
</tr>
<tr>
<td>7</td>
<td>Cover for Optional Water Cooling Kit, remove when the water cooling kit is installed. See instructions with water cooling Kit.</td>
</tr>
<tr>
<td>8</td>
<td>Trigger Connector 5-pin amphenol for connecting the MIG gun trigger. See Installation Section for detail.</td>
</tr>
</tbody>
</table>
1. STATUS LED

The status LED indicates system status. Normal operation is a steady green light.

Note: During normal power-up, the LED may flash red and/or green as the equipment performs self tests.

<table>
<thead>
<tr>
<th>LED condition</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady green</td>
<td>System okay. The power source and wire feeder are communicating normally.</td>
</tr>
<tr>
<td>Blinking green</td>
<td>Occurs during a reset and indicates the power source is identifying each component in the system. This is normal for the first 10 seconds after power-up, or if the system configuration is changed during operation.</td>
</tr>
<tr>
<td>Alternating green and red</td>
<td>Non-recoverable system fault. If the power source or wire feeder status LED is flashing any combination of red and green, errors are present in the system. Read the error code before the machine is turned off. Instructions for reading the error code are detailed in the Service Manual. Individual code digits are flashed in red with a long pause between digits. If more than one code is present, the codes will be separated by a green light. To clear the error, turn the power source OFF, and then back ON to reset. See troubleshooting section.</td>
</tr>
<tr>
<td>Steady red</td>
<td>Non recoverable hardware fault. Generally indicates a problem with the cables connecting the wire feeder to the power source.</td>
</tr>
<tr>
<td>Blinking red</td>
<td>Not applicable.</td>
</tr>
</tbody>
</table>

2. DIGITAL METERS AND OUTPUT ENCODER KNOBS (See Figure B.2)

The primary weld procedure settings are controlled and displayed using digital meters and output encoder knobs located at the top of the POWER FEED® 10M Single Wire Feeder control panel.

FIGURE B.2

A. WIRE FEED SPEED/AMMETER DISPLAY

This meter displays either the wire feed speed or current value (Amps) depending upon welding process (Mode) being used and the status of the wire feeder and power source. Written below the display is "WFS" and "Amps". An LED light illuminates which value is being displayed on the meter. The knob below the meter adjusts the value displayed on the meters.

<table>
<thead>
<tr>
<th>Prior to Welding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV Welding Processes</td>
<td>Meter displays the preset WFS value.</td>
</tr>
<tr>
<td>CC Welding Processes</td>
<td>Meter displays the preset Amps.</td>
</tr>
<tr>
<td>During Welding</td>
<td>Meter displays displays the actual average welding Amps.</td>
</tr>
<tr>
<td>An Weld Processes</td>
<td></td>
</tr>
<tr>
<td>After Welding</td>
<td>The meter holds the actual current value for 5 seconds. The display blinks to indicate the POWER FEED® 10M Single Wire Feeder is in the "Hold" period. If the output is adjusted while in the "Hold" period, the POWER FEED® 10M Single Wire Feeder will revert to the "Prior to welding" display.</td>
</tr>
<tr>
<td>An Weld Processes</td>
<td>The meter holds the actual current value for 5 seconds. The display blinks to indicate the POWER FEED® 10M Single Wire Feeder is in the "Hold" period. If the output is adjusted while in the "Hold" period, the POWER FEED® 10M Single Wire Feeder will revert to the "Prior to welding" display.</td>
</tr>
</tbody>
</table>

Note: If the output knob for the WFS/AMPS is adjusted while the POWER FEED® 10M Single Wire Feeder is in the “Hold” period, the POWER FEED® 10M Single Wire Feeder will immediately revert to the “Prior to Welding” display.

The default wire feed speed units are inches/minute and can be changed to meters/minute by entering the "Set-up Menu" in this Operation Section. The wire feed speed is calibrated to within ±2%. Refer to the power source man-
B. VOLTS / TRIM DISPLAY

The voltage/trim meter displays either the voltage or trim value, depending upon the welding process (mode) being used and the status of the wire feeder and power source.

PRIOR TO WELDING

<table>
<thead>
<tr>
<th>Weld Process</th>
<th>Volts / Trim Display prior to operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonsynergic CV</td>
<td>Displays the preset Voltage value.</td>
</tr>
<tr>
<td>Synergic CV</td>
<td>Displays the preset Voltage value.</td>
</tr>
<tr>
<td>Synergic CV-Pulse</td>
<td>Displays the preset Trim value from 0.50 to 1.50, with 1.00 as the default. Trim adjusts the arc length for Pulse programs. Lower the trim value to decrease the arc length, and raise the trim value to increase the arc length. A trim value of 1.00 is optimum for most conditions.</td>
</tr>
</tbody>
</table>
| Synergic CV-STT | • Adjusts the background current of the STT waveform. Used to modify the heat input.
• Linc Net Power Sources: Displays the background current as a value from 0.50 to 1.50, with 1.00 as the default. Lower the trim value to decrease the heat input, and raise the trim value to increase the heat input. A trim value of 1.00 is optimum for most conditions.
• Arc Link Power Sources: Displays the background current in amps. Lower the background current to decrease the heat input and raise the background current to increase the heat input. |
| Nonsynergic Power | Displays the preset CP value from 0 to 20. The Power mode is best for thin sheet metal and aluminum applications. |

DURING WELDING

<table>
<thead>
<tr>
<th>Weld Process</th>
<th>Volts / Trim Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Processes</td>
<td>Displays Actual Average Arc Voltage</td>
</tr>
</tbody>
</table>

AFTER WELDING

<table>
<thead>
<tr>
<th>Weld Process</th>
<th>Volt/Trim Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Processes</td>
<td>After welding, the meter holds the actual average arc voltage for 5 seconds. During this time, the display flashes to indicate the wire feeder is in the "Hold" period. Output adjustment while in the "Hold" period results in the "prior to operation" characteristics described above.</td>
</tr>
</tbody>
</table>

SYNERGIC CV VOLTAGE DISPLAY

Synergic CV programs feature an ideal voltage best suited for most procedures. Use this voltage as a starting point for the weld procedure and adjust if needed for personal preferences.

The voltage is calibrated to ±2% over a range of 10 to 45 volts.

When the voltage knob is rotated, the display will show an upper or lower bar indicating if the voltage is above or below the ideal voltage.

- Preset voltage above ideal voltage. (upper bar displayed)
- Preset voltage at ideal voltage. (no bar displayed)
- Preset voltage below ideal voltage. (lower bar displayed)
OVERVIEW:

The MSP4 is the standard mode select panel for the POWER FEED® 10M Single Wire Feeder wire feeders. The MSP4 is capable of:

- Weld mode selection.
- Arc Control adjustment.
- Weld sequence control (Preflow Time, Run-in WFS, etc.)

Additionally, the MSP4 includes an infrared (IR) port for wireless communication and configuration using a Palm OS based hand held computer and a simplified control layout.

LAYOUT-CONTROLS
(SEE FIGURE B.3)

The MSP4 panel controls consist of an encoder knob (Item 8) and two push buttons (Items 7 and 9). The encoder is primarily used to change the value of the selected attribute.

The left pushbutton (Item 7) is used to toggle between Weld Mode selection and any active Arc Controls (a.k.a. wave controls). The choices of wave controls varies by weld mode. For example, weld mode 31 has one wave control, “Pinch”. Weld mode 110 has three wave controls, “Peak Current”, “Background Current” and “Tailout”. If the selected weld mode has no wave controls, pressing the left pushbutton will have no affect. If the selected weld mode uses one or more wave controls, pressing the left pushbutton will sequence the selection from weld mode -> wave control 1 (if active) -> wave control 2 (if active) -> wave control 3 (if active) -> wave control 4 (if active) then back to weld mode.

The right pushbutton (Item 9) is used to select attributes that affect the available weld parameters such as preflow time, burnback time, etc. Since most users will require infrequent access to these attributes, they are separate from weld mode selection and wave control adjustment.

LAYOUT-DIGITAL DISPLAY

The MSP4 display consists of a large 4-digit, 7-segment LED display, two 8-character alphanumeric LED displays and one 16-character alphanumeric LED display. The information shown on the various displays depends on the state of the user interface as described below.

When the MSP4 is being used to select a weld mode, the 4-digit display (Item 2) indicates the selected weld mode number. The upper 8-character alphanumeric display (Item 3) indicates the electrode type (steel, aluminum, etc.) The lower 8-character alphanumeric display (Item 4) indicates the electrode size (.035", 1/16", etc.).

Through the use of alphanumeric displays, the MSP4 provides standard text messages designed to enhance the user’s understanding of the machine’s operation as well as provide advanced capabilities. The panel provides:

- Clear identification of the selected weld mode.
- Identification of weld modes not listed on the preprinted weld mode list label.
- Control of up to four wave controls (arc controls.)
- Weld mode specific wave control name display (Peak, Background, Pinch, etc.).
- Unit values are displayed (Amps, in/min, etc.).
- User-friendly machine setup and configuration.

- Limit setting for restricting the operators range of control.
- Lockout to prevent unauthorized changes to machine configuration.

(For Codes 11377 and below)
CHANGING ARC WAVE CONTROL

If the selected weld mode uses any of the four available wave controls, users can press the left MSP4 pushbutton until the ARC CONTROL LED is illuminated. The value, name and units (if applicable) of the available wave controls will appear. Note that the name of the control is derived from the weld table and may not necessarily appear as "Wave Control". Repeated pressing of the left MSP4 pushbutton will cycle through all active wave controls and then the weld mode. Turning the MSP4 encoder will change the value of the displayed wave control.

CHANGING WELD SEQUENCE BEHAVIOR

Weld sequencing attributes are grouped into two categories, START OPTIONS and END OPTIONS. START OPTIONS may include Preflow Time, Run-in Wire Feed Speed, and Start Time. END OPTIONS may include Spot Timer, Crater Time, Burnback Time and Postflow Time. The attributes that appear in the START and END OPTIONS are weld mode dependent. For example, if a TIG weld mode is selected, Run-in WFS will not appear since it is not relevant to the selected process. Repeated pressing of the right MSP4 pushbutton will cycle through all relevant START and END OPTIONS. Turning the MSP4 encoder will change the value of the selected option.

When the Start Time attribute is set to a value other than OFF, the START OPTIONS LED will blink synchronous with the WFS and VOLTS/TRIM LED's on the dual-display panel. This blinking is used to indicate that start wire feed speed and voltage/trim can now be set to values different from those used while welding. Similarly, if the Crater Time attribute is set to a value other than OFF, the END OPTIONS LED will blink synchronously with the dual-display LED’s, indicating that crater wire feed speed and voltage/trim now can be set to values different from those used while welding.

INFRARED (IR) CONTROL

(For Codes 11377 and below)

The MSP4 interface includes an infrared transceiver. This allows wireless machine configuration using a Palm OS based hand held computer. A proprietary Palm OS application, Weld Manager, was developed for this purpose. (Contact Lincoln Electric for more information on this feature.)

LOCKOUT/SECURITY

The MSP4 can be optionally configured to prevent the welder from changing selected user interface controls. By default, all user interface controls can be changed. Weld Manager software (for Palm OS or PC) must be used to lock or unlock user interface controls and to set a pass code.
LIMIT SETTING

The MSP4 can be optionally configured to limit the operator's range of control of any weld parameter (weld WFS, arc control, etc.). Limits are only available with the Dual Procedure/Memory Panel.

MACHINE SETUP/USER PREFERENCES

The MSP4 can be used to configure and troubleshoot the machine.

ACCESSING THE MACHINE SETUP MENU

To access the Machine Setup menu, press both MSP4 push buttons simultaneously. The MSP4 7-segment display will display the first user preference, "P.0", and the SETUP LED will illuminate.

• Pressing the left MSP4 pushbutton will exit the entire Machine Setup menu while in the P.0 user preference.

• Turning the MSP4 encoder knob will select other available User Preferences.

• To exit the User Preference Menu, either rotate the MSP4 encoder until P.0 is displayed and press the left MSP4 pushbutton or press both MSP4 push buttons simultaneously at any time.
SETUP MENU FEATURES

The Setup Menu gives access to the Setup Configuration. Stored in the setup configuration are user parameters that generally only need to be set at installation. The parameters are grouped as shown in the following table.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.1 through P.99</td>
<td>Unsecured Parameters (always adjustable)</td>
</tr>
<tr>
<td>P.100 through P.107</td>
<td>Diagnostic Parameters (always read only)</td>
</tr>
</tbody>
</table>

SET-UP FEATURES MENU

(See Figure B.3a)

1. To access the set-up menu, press the Right and Left buttons of the MSP4 panel simultaneously. Note that the set-up menu cannot be accessed if the system is welding, or if there is a fault (The status LED is not solid green).

Change the value of the blinking parameter by rotating the SET knob.

2. After changing a parameter it is necessary to press the Right hand button to save the new setting. Pressing the Left button will cancel the change.

3. To exit the set-up menu at any time, press the Right and Left buttons of the MSP4 panel simultaneously. Alternately, 1 minute of inactivity will also exit the set-up menu.

FIGURE B.3a - SETUP MENU
USER DEFINED PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.0 Exit Setup Menu</td>
<td>This setup menu parameter can be used to exit the setup menu. When P.0 is displayed, press the left Mode Select button to exit the setup menu.</td>
</tr>
<tr>
<td>P.1 Wire Feed Speed Units</td>
<td>This option selects which units to use for displaying wire feed speed. English = inches/minute wire feed speed units (default). Metric = meters/minute wire feed speed units.</td>
</tr>
<tr>
<td>P.2 Arc Display Mode</td>
<td>This option selects what value will be shown on the upper left display while welding. Amps = The left display shows Amperage while welding (default). WFS = The left display shows Wire Feed Speed while welding.</td>
</tr>
<tr>
<td>P.3 Display Options</td>
<td>This setup parameter was previously named "Display Energy". If the previous software revision had this parameter set to display energy, that selection will remain. This option selects the information displayed on the alphanumeric displayes while welding. Not all P.3 selections will be available on all machines. In order for each selection to be included in the list, the power source must support that feature. A software update of the power source may be needed to include the features. Standard Display = The lower displays will continue to show preset information during and after a weld (default). Show Energy = Energy is displayed, along with time in HH:MM:SS format. Show Weld Score = The accumulative weld score result is shown.</td>
</tr>
<tr>
<td>P.4 Recall Memory with Trigger</td>
<td>This option allows a memory to be recalled by quickly pulling and releasing the gun trigger. To recall a memory, quickly pull and release the trigger the number of times that correspond to the memory number. For example, to recall memory 3, quickly pull and release the trigger 3 times. To recall memory 1, quickly pull and release the trigger the number of user memories plus 1. Memories cannot be recalled while the system is welding. Disabled = The gun trigger cannot be used to recall user memories (default). Enabled = The gun trigger can be used to recall user memories.</td>
</tr>
</tbody>
</table>

POWER FEED® 10M SINGLE WIRE FEEDER
USER DEFINED PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
</table>
| **P.5** Procedure Change Method | This option selects how remote procedure selection (A/B) will be made. The selected procedure can be changed locally at the user interface by pressing the 'A-Gun-B' button. The following methods can be used to remotely change the selected procedure:
* Use an external switch wired to the procedure select input.
* Quickly releasing and re-pulling the gun trigger.
* Using a dual-schedule gun which incorporates a procedure select switch in the trigger mechanism (pulling the trigger more than half way changes the procedure from A to B)

The possible values for this parameter are:
* External Switch = Procedure selection may only be performed at the memory panel or an external switch (e.g. K683).
* Quick Trigger = The selected procedure can be changed remotely by releasing and re-pulling the trigger quickly while welding. This feature is disabled in 4-Step trigger mode. The external procedure switch is disabled. To operate:
 - Select "GUN" on the memory panel.
 - Start the weld by pulling the gun trigger. The system will weld with procedure A settings.
 - While welding, quickly release then pull the gun trigger once. The system will switch to procedure B settings. Repeat to switch back to procedure A settings. The procedure can be changed as many times as needed during the weld.
 - Release the trigger to stop welding. The system will automatically return to procedure A settings.
* Integral TrigProc = When using a Magnum DS dual-schedule gun (or similar) that incorporates a procedure switch in the gun trigger mechanism. While welding in 2-step, machine operation is identical to the "External Switch" selection. When welding in 4-step, additional logic prevents procedure A from being re-selected when the trigger is released at step 2 of the 4-step weld sequence. The machine will always operate in 2-step if a weld is made exclusively in procedure A, regardless of the 2/4 step switch position (this is intended to simplify tack welding when using a dual-schedule gun in 4-step). |

| **P.6** Stall Factor Adjustment | This option allows the adjustment of the stall factor in Push/Pull operation. The stall factor controls the stall torque of the push motor when using a push-pull gun. The wire feeder is factory-set to not stall unless there is a large resistance to feeding wire. The stall factor can be reduced to stall more easily and possibly prevent bird nesting. However, low stall factors can cause motor stalling during normal welding conditions, which results in the wire burning back to the tip or rapid tack welds. If you are experiencing bird nests, check for other feeding problems before adjusting the stall factor. The default value for the stall factor is 75, with a range of 5 to 100. |
USER DEFINED PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
</table>
| **P.7** | **Gun Offset Adjustment**
This option adjusts the wire feed speed calibration of the pull motor of a push-pull gun. This should only be performed when other possible corrections do not solve any push-pull feeding problems. An rpm meter is required to perform the pull gun motor offset calibration. To perform the calibration procedure do the following:
1. Release the pressure arm on both the pull and push wire drives.
2. Set the wire feed speed to 200 ipm.
3. Remove wire from the pull wire drive.
4. Hold an rpm meter to the drive roll in the pull gun.
5. Pull the trigger on the push-pull gun.
6. Measure the rpm of the pull motor. The rpm should be between 115 and 125 rpm. If necessary, decrease the calibration setting to slow the pull motor, or increase the calibration setting to speed up the motor. The calibration range is -30 to +30, with 0 as the default value. |
| **P.8** | **TIG Gas Control**
This option allows control over which gas solenoid actuates while TIG welding.
"Valve (manual)" = No MIG solenoid will actuate while TIG welding, gas flow is manually controlled by an external valve.
"Solenoid (auto) = This selection only applicable to PWC300. The MIG solenoid will turn on and off automatically while TIG welding.
"Feeder Solenoid" = No applicable to PWC300. The internal (feeder) MIG solenoid will turn on and off automatically while TIG welding.
"Pwr Src Solenoid" = Not applicable to PWC300. Any gas solenoid connected to the power source will turn on and off automatically while TIG welding. This selection will not appear in the list if the power source does not support a gas solenoid.
Notes: Preflow is not available while TIG welding. Postflow is available - the same postflow time will be used in MIG and TIG. When machine output on/off is controlled via the upper right knob, gas flow will not start until the tungsten touches the work. Gas flow will continue when the arc is broken until the Postflow time expires. When machine output on/off is controlled via an arc start switch or foot Amptrol, gas will begin flowing when the output is turned on and will continue flowing until the output is turned off and the Postflow time expires. |
| **P.9** | **Crater Delay**
This option is used to skip the Crater sequence when making short tack welds. If the trigger is released before the timer expires, Crater will be bypassed and the weld will end. If the trigger is released after the timer expires, the Crater sequence will function normally (if enabled). |
| **P.14** | **Reset Consumable Weight**
Use this option to reset the initial weight of the consumable package. Press the Right Button to reset the consumable weight. This option will only appear with systems using Production Monitoring. |
Parameter | **Definition**
--- | ---
P.16 | **Push-Pull Gun Knob Behavior**
This option determines how the potentiometer on the Push/Pull torch will behave.
Gun Pot Enabled = The welding wire feed speed is always controlled by the potentiometer on the push-pull gun (default). The left front panel knob is only used to adjust Start and Crater wire feed speed.
Gun Pot Disabled = The wire feed speed is always controlled by the left front panel knob. This setting is useful when the operator wishes to have wire feed speed settings recalled from memories and not have the potentiometer "overwrite" the setting.
Gun Pot Proc A = When in procedure A, the welding wire feed speed is controlled by the potentiometer on the push-pull gun. When in procedure B, the welding wire feed speed is controlled by the left front panel knob. This setting allows a fixed wire feed speed to be selected in procedure changes.

P.20 | **Display Trim as Volts Option**
This option determines how trim is displayed.
False = The trim is displayed in the format defined in the weld set (default).
True = All trim values are displayed as a voltage.

P.22 | **Arc Start/Loss Error Time**
This option can be used to optionally shut off output if an arc is not established, or is lost for a specified amount of time. Error 269 will be displayed if the machine times out. If the value is set to OFF, machine output will not be turned off if an arc is not established nor will output be turned off if an arc is lost. The trigger can be used to hot feed the wire (default). If a value is set, the machine output will shut off if an arc is not established within the specified amount of time after the trigger is pulled or if the trigger remains pulled after an arc is lost. This is disabled while welding in Stick, TIG or Gouge. To prevent nuisance errors, set Arc Start/Loss Error Time to an appropriate value after considering all welding parameters (run-in wire feed speed, weld wire feed speed, electrical stick out, etc). To prevent subsequent changes to Arc Start/Loss Error Time, the setup menu should be locked out by setting Preference Lock = Yes using the Power Wave Manager software.

P.80 | **Sense From Studs**
Use this option for diagnostic purposes only. When power is cycled, this option is automatically reset to False.
False = Voltage sensing is automatically determined by the selected weld mode and other machine settings (default).
True = Voltage sensing is forced to "studs".

P.81 | **Sense Leads Selection**
Used in place of DIP switches for configuration of the work and electrode sense leads. This option will only appear in the list if the power source has a hardware selection option.
67 pos polarity = An electrode sense lead is connected using positive polarity. This is used by most GMAW welding procedures.
67 neg polarity = An electrode sense lead is connected using negative polarity. This is used by most GTAW welding procedures and some Innershield procedures.
67 & 21 = An electrode sense lead and work sense lead are connected.
Hardware Config = The hardware determines the best remote sensing configuration. This is applicable to MIG welding procedures only.

P.82 | **Voltage Sense Display**
Allows viewing of Voltage Sense Lead Selection to aid in troubleshooting. The configuration is displayed as a text string on the lower display whenever the output is enabled. This parameter is not saved on a power cycle, but will be reset to False.
USER DEFINED PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.99</td>
<td>Show Test Modes
Most power sources contain weld modes used for calibration and test purposes. By default, the machine does not include test weld modes in the list of weld modes that are available to the operator. To manually select a test weld mode, set this option to "Yes". When the power source is turned off and back on again, the test modes will no longer appear in the mode list. Test weld modes typically require the machine output to be connected to a grid load and cannot be used for welding.</td>
</tr>
<tr>
<td>P.100</td>
<td>View Diagnostics
Diagnostics are only used for servicing or troubleshooting the Power Wave system. Select "Yes" to access the diagnostic options in the menu. Additional parameters will now appear in the setup menu (P.101, P.102, etc).</td>
</tr>
<tr>
<td>P.101</td>
<td>View Event Logs
Used for viewing all the system event logs. Press the Right Button to enter the option. Rotate Control Knob to select the desired event log to read. Press the Right Button again to enter the selected log. Rotating the Control Knob will scroll through the event log, displaying the log index number, event code and some other data. Press the Left Button to back out to select another log. Press the Left Button again to exit this option.</td>
</tr>
<tr>
<td>P.102</td>
<td>View Fatal Logs
Used for viewing all the system fatal logs. Press the Right Button to enter the option. Rotate Control Knob to select the desired fatal log to read. Press the Right Button again to enter that log. Rotating the Control Knob will scroll through the log, displaying the log index number and fatal code. Press the Left Button to back out to select another log. Press the Left Button again to exit this option.</td>
</tr>
<tr>
<td>P.103</td>
<td>View Software Version Information
Used for viewing the software versions for each board in the system. Press the Right Button to enter the option. Rotate Control Knob to select the desired board to read. Press the Right Button again to read the firmware version. Press the Left Button to back out to select another board. Rotate the Control Knob to select another board, or press the Left Button to exit this option.</td>
</tr>
<tr>
<td>P.104</td>
<td>View Hardware Version Information
Used for viewing the hardware version for each board in the system. Press the right MSP Button to enter the option. Rotate Set knob to select the desired board to read. Press the right button again to read the hardware version. Press the left button to back out to select another board. Press the left button again to exit this option.</td>
</tr>
<tr>
<td>P.105</td>
<td>View Welding Software Information
Used for viewing the Weld Set in the Power Source. Press the Right Button to read the Weld Set version. Press the Left Button to back out and exit this option.</td>
</tr>
<tr>
<td>P.106</td>
<td>View Ethernet IP Address
Used for viewing the IP address of Ethernet compatible equipment. Press the Right Button to read the IP Address. Press the Left Button to back out and exit this option. The IP address cannot be changed using this option.</td>
</tr>
<tr>
<td>P.107</td>
<td>View Power Source Protocol
Used for viewing the type of power source the feeder is connected to. Press the Right Button to identify the power source as either LincNet or ArcLink. Press the Left Button to back out and exit this option.</td>
</tr>
</tbody>
</table>
USER DEFINED PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.501</td>
<td>Encoder Lockout
Locks one or both of the upper knobs (encoders), preventing the operator from changing wire feed speed, amps, volts or trim. The function of each upper knob depends on the selected weld mode. When a constant current weld mode is selected (e.g. Stick, TIG, Gouge), the upper right knob will always function as an on/off switch. This parameter can only be accessed using Power Wave Manager software.</td>
</tr>
<tr>
<td>P.502</td>
<td>Memory Change Lockout
Determines if the memories can be overwritten with new contents.
No = Memories can be saved and limits can be configured (default).
Yes = Memories cannot be changed - saving is prohibited and limits cannot be re-configured.
This parameter can only be accessed using Power Wave Manager software.</td>
</tr>
<tr>
<td>P.503</td>
<td>Memory Button Disable
Disables the specified memory button(s). When a memory is disabled, welding procedures cannot be restored from or saved to that memory. If an attempt is made to save or restore a disabled memory, a message will be displayed on the lower display indicating the memory number is disabled. In multi-head systems, this parameter disables the same memory buttons on both feed heads. This parameter can only be accessed using Power Wave Manager software.</td>
</tr>
<tr>
<td>P.504</td>
<td>Mode Select Panel Lock
Selects between several Mode Select Panel lockout preferences. When a Mode Select Panel selection is locked and an attempt is made to change that parameter, a message will be displayed on the lower display indicating the parameter is locked.
All MSP Options Unlocked = All adjustable parameters on the Mode Select Panel are unlocked.
All MSP Options Locked = All knobs and buttons on the Mode Select Panel are locked.
Start & End Options Locked = The Start and End parameters on the Mode Select Panel are locked, all others are unlocked.
Weld Mode Option Locked = The weld mode cannot be changed from the Mode Select Panel, all others Mode Select Panel settings are unlocked.
Wave Control Options Locked = The Wave Control parameters on the Mode Select Panel are locked, all others are unlocked.
Start, End, Wave Options Locked = The Start, End and Wave Control parameters on the Mode Select Panel are locked, all others are unlocked.
Start, End, Mode Options Locked = The Start, End and Weld Mode Select parameters on the Mode Select Panel are locked, all others are unlocked.
This parameter can only be accessed using Power Wave Manager software.</td>
</tr>
<tr>
<td>P.505</td>
<td>Setup Menu Lock
Determines if the setup parameters can be modified by the operator without entering a passcode.
No = The operator can change any set menu parameter without first entering the passcode even if the passcode is non-zero (default).
Yes = The operator must enter the passcode (if the passcode is non-zero) in order to change any setup menu parameters.
This parameter can only be accessed using Power Wave Manager software.</td>
</tr>
</tbody>
</table>
USER DEFINED PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.506</td>
<td>Set User Interface Passcode
Prevents unauthorized changes to the equipment. The default passcode is zero which allows full access. A nonzero passcode will prevent unauthorized changes to memory limits, saving to memory (if P.502 = Yes), changes to setup parameters (if P.505 = Yes).
This parameter can only be accessed using Power Wave Manager software.</td>
</tr>
<tr>
<td>P.509</td>
<td>UI Master Lockout
Locks all user interface controls, preventing the operator from making any changes. This parameter can only be accessed using Power Wave Manager software.</td>
</tr>
</tbody>
</table>
4. COLD FEED / GAS PURGE SWITCH

Cold Feed and Gas Purge are combined into a two position momentary toggle switch.

To activate Cold Feeding, hold the switch in the UP position. The wire drive will feed electrode but neither the power source nor the gas solenoid will be energized. Keeping the electrode and gun electrically “cold”. Adjust the speed of cold feeding by rotating the WFS knob.

- This feature is useful for threading the electrode through the gun.
- While the “cold feed” circuit is activated, adjust the wire feed speed using the WFS knob.

Hold with toggle switch in the DOWN position to activate Gas Purge and let the shielding gas flow. The gas solenoid valve will energize but neither the power source output nor the drive motor will be turned on. The Gas Purge switch is useful for setting the proper flow rate of shielding gas. Flow meters should always be adjusted while the shielding gas is flowing.

5. 2-STEP / 4-STEP TRIGGER SWITCH

The 2-Step / 4-Step switch has two set positions. Place the switch in the UP position for 2-step Trigger Operation and in the down position for 4-step Trigger Operation.

2 Step Trigger
2 Step trigger operation is the most common. When the gun trigger is pulled, the welding system (power source and wire feeder) cycles through the arc starting sequence and into the main welding parameters. The welding system will continue to weld as long as the gun trigger is activated. Once the trigger is released, the welding system cycles through the arc ending steps.

4-Step Trigger Operation
When the switch is in the 4-Step position the POWER FEED® 10M Single Wire Feeder provides trigger interlock capability (the operator can release the trigger and the system will continue to weld) and it also allows the operator to control the amount of time spent in the start and crater weld modes.
See Sequence of Operation for more information on the overall interaction trigger switch with the weld sequence.

The 2-Step / 4-Step trigger has no effect when welding with SMAW or CAG procedures.
2 STEP TRIGGER OPERATION
(See Figure B.4)
Sometimes it is advantageous to set specific arc start, crater and arc ending parameters for the ideal weld. Many times when welding aluminum crater control is necessary to make a good weld. This is done by setting Start, Crater and Burnback functions to desired values.

SEQUENCE OF OPERATION
Following is the total weld sequence that the POWER FEED® 10M Single Wire Feeder will execute. If any parameter is inactive or its time is set to zero, the weld procedure immediately shifts to the next parameter in the sequence.

1. PREFLOW: Shielding gas begins to flow immediately when the gun trigger is pulled.

2. RUN-IN: After preflow time expires, the power source regulates to the start output and wire is advanced towards the work piece at the Strike WFS. If an arc is not established within 2.5 seconds, the power source output and wire feed speed skips to the weld settings.

3. START & UPSLOPE: As soon as the trigger is pulled, this starts preflow. The Strike arc established, Start time, and Upslope parameters are used at the beginning of the weld sequence to establish a stable arc and provide a smooth transition to the weld settings.

4. WELD: After upslope, the power source output and the wire feed speed continue at the weld settings.

5. CRATER: As soon as the trigger is released, the wire feed speed and power source output ramp to the crater settings throughout the crater time. The time period of ramping from the weld settings to the crater settings is called DOWNSLOPE.

6. BURNBACK: After the crater time expires, the wire feed speed is turned OFF and the machine output continues for the burnback time.

7. POSTFLOW: Next, the machine output is turned OFF and shielding gas continues until the post flow timer expires.
4 STEP TRIGGER OPERATION
(See Figure B.5)
The 4 step trigger sequence gives the most flexibility when the Start, Crater and Burnback functions are active. This is a popular choice when welding aluminum because extra heat may be needed during Start and less heat desired during Crater. With 4 step trigger, the welder chooses the amount of time to weld at the Start, Weld and Crater settings by using the gun trigger. Burnback reduces the likelihood of wire to sticking in the weld pool at the end of a weld and also prepares the end of the wire for the next arc start.

SEQUENCE OF OPERATION
Following is the total weld sequence that the POWER FEED® 10M Single Wire Feeder will execute. If any parameter is inactive or its time is set to zero, the weld procedure immediately shifts to the next parameter in the sequence.

1. PREFLOW: Shielding gas begins to flow immediately when the gun trigger is pulled.

2. RUN-IN: After preflow time expires, the power source regulates to the start output and wire is advanced towards the work piece at the Strike WFS. If an arc is not established within 2.5 seconds, the power source output and wire feed speed skips to the weld settings.

3. START: The power source welds at the “Start” WFS and voltage until the trigger is released.

4. UPSLOPE: Once the trigger is released, both the machine output and the wire feed speed ramp up or down to the weld settings throughout the start time. The time period of ramping from the Start settings to the Weld settings is called UPSLOPE.

5. WELD: After Upslope, the power source output and the wire feed speed continue at the Weld settings.

6. DOWNSLOPE: Then as soon as the trigger is pulled, the wire feed speed and power source output ramp to the crater settings during the crater time. The time period of ramping from the weld settings to the crater settings is called DOWNSLOPE.

7. CRATER: Alter the Downslope time expires, the machine welds at the Crater WFS and voltage settings until either the trigger is released or the Crater time expires.

8. BURNBACK: After the crater time expires, the wire feed speed is turned OFF and the machine output continues for the burnback time.

9. POSTFLOW: Next, the machine output is turned OFF and shielding gas continues to flow until the post flow timer expires.
The Power Feed®/Power Wave® system delivers world class arc performance for a wide variety of processes. Using the foundation of Waveform Control Technology™, each weld mode is precisely tuned to meet exacting standards for low spatter, weld bead profile and arc shape.

Customized welding software means even the most difficult materials can be welded with the Power Feed/Power Wave system. Copper, Nickel, Silicon Bronze are just a few of the unusual alloys the Power Feed system welds with ease when special software is loaded.

Figure B.6 below shows a list of weld modes common on many Power Wave power sources. This table is found on the inside front panel door of the POWER FEED® 10M Single Wire Feeder. The specific list of available weld modes depends upon the power source connected to the POWER FEED® 10M Single Wire Feeder wire feeder.

- CC - Stick Mode
- CC - TIG
- CC - Gouge
- CV - Non Synergic
- CV - Synergic
- CV - Pulse
- CV - Pulse on Pulse
- CV - STT

FIGURE B.6

![Figure B.6 showing weld modes]

Non-Synergic Modes

Synergic Modes
STEEL AND STAINLESS SYNERGIC GMAW-P (PULSED MIG) WELDING

Synergic GMAW-P (Pulsed MIG) welding is ideal for low spatter, out of position and reduced heat input applications. During pulse welding, the welding current continuously switches from a low level to a high level and then back again. Each pulse sends a small droplet of molten metal from the wire to the weld puddle.

Pulse welding controls the arc length with ‘Trim’ instead of voltage. When trim (arc length) is adjusted, the Power Wave® automatically recalculates the voltage, current and time of each part of the pulse waveform for the best result. Trim adjusts the arc length and ranges from 0.50 to 1.50, with a nominal value of 1.00 for a 3/4” (19mm) electrode stick-out. Trim values greater than 1.00 increase the arc length, while values less than 1.00 decrease the arc length.

ARC CONTROL

For steel and stainless pulse modes, Arc Control regulates the focus or shape of the arc. Arc Control values greater than 0.0 increase the pulse frequency while decreasing the background current, resulting in a tight, stiff arc best for high speed sheet metal welding. Arc Control values less than 0.0 decrease the pulse frequency while increasing the background current, for a soft arc good for out-of-position welding.
ALUMINUM SYNERGIC GMAW-P (PULSED MIG) AND GMAW-PP (PULSE ON PULSE) WELDING

The POWER FEED® 10M Single Wire Feeder and Power Wave welding power source combine to readily produce top quality aluminum welds with excellent appearance, little spatter and good bead shape. Push-pull guns are available for consistent feeding when welding a long distance away from the wire feeder.

Pulse-on-Pulse Welding
The Power Wave® system offers both traditional pulse and Pulse-on-Pulse™. Pulse-on-Pulse (GMAW-PP) is an exclusive waveform for aluminum welding. Use it to make welds with a "stacked dime" appearance, similar to GTAW welds.

FIGURE B.7c

The pulsing frequency is adjustable. Changing the frequency modulation (or arc control) of the waveform changes the ripple spacing. Faster travel speeds may be achieved by using higher values of frequency modulation.

FIGURE B.7d

Frequency Modulation = -10
Wide weld and ripple spacing, slow travel speed.

Frequency Modulation = 10
Narrow weld and ripple spacing, fast travel speed.
MACHINE FUNCTIONALITY BY WELD PROCESS
CC-STICK
Use the following tables to review how the machine functions (output controls, arc control and weld options) for the weld modes listed in the top table.

CC STICK MODES

<table>
<thead>
<tr>
<th>Material</th>
<th>PROCESS</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>Stick Soft(7018)</td>
<td>1</td>
</tr>
<tr>
<td>Steel</td>
<td>Stick Crisp(6010)</td>
<td>2</td>
</tr>
</tbody>
</table>

OUTPUT CONTROL KNOBS

<table>
<thead>
<tr>
<th>194</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFS</td>
<td>VOLTS</td>
</tr>
<tr>
<td>AMPS</td>
<td>TRIM</td>
</tr>
<tr>
<td>LESS AMPS</td>
<td>OUTPUT OFF</td>
</tr>
<tr>
<td>MORE AMPS</td>
<td>OUTPUT ON</td>
</tr>
</tbody>
</table>

ARC CONTROL

<table>
<thead>
<tr>
<th>ARC FORCE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Soft)-10.0 to (Crisp)+10.0</td>
<td>Arc Force adjusts the short circuit current for a soft arc, or for a forceful, driving arc. It helps to prevent sticking and shorting organic coated electrodes, particularly globular transfer types such as stainless and low hydrogen. Arc Force is especially effective for root pass on pipe with stainless electrode and helps to minimize spatter for certain electrodes and procedure as with low hydrogen, etc.</td>
</tr>
</tbody>
</table>

START OPTIONS

No arc ending options are active for SMAW (Stick) welding modes.

END OPTIONS

No arc ending options are active for SMAW (Stick) welding modes.

NOTE: When a remote control pot such as a K936-1 or -2 Hand Amptrol is connected, the left Control Knob adjusts the maximum arc amperage while the remote pot adjusts the actual arc amperage from minimum to the preset maximum.
MACHINE FUNCTIONALITY BY WELD PROCESS
CV GMAW/FCAW (NON-SYNERGIC)
Use the following tables to review how the machine functions (output controls, arc control, Start options and weld options) for the weld modes listed in the top table.

OUTPUT CONTROL KNOBS, WELD MODE 5 & 6

<table>
<thead>
<tr>
<th>Material</th>
<th>PROCESS</th>
<th>WELD MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>GMAW, CV</td>
<td>5</td>
</tr>
<tr>
<td>Steel</td>
<td>GMAW, POWER MODE</td>
<td>40</td>
</tr>
<tr>
<td>Steel</td>
<td>FCAW, CV</td>
<td>6</td>
</tr>
</tbody>
</table>

START OPTIONS
The start Options available in these Non-Synergic CV weld modes, their adjustment range and function are as follows:

<table>
<thead>
<tr>
<th>EFFECT / RANGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preflow Time</td>
<td>Adjusts the time the gas flows after the trigger is pulled and prior to feeding.</td>
</tr>
<tr>
<td>Run-In WFS: Off, 30 to 150 in/min.</td>
<td>Run-In sets the wire feed speed from the time the trigger is pulled until an arc is established.</td>
</tr>
<tr>
<td>Start Procedure 0 to 10 seconds</td>
<td>The Start Procedure controls the WFS and Volts for a specified time at the beginning of the weld. During the start time, the machine will ramp up or down from the Start Procedure to the preset Welding Procedure.</td>
</tr>
</tbody>
</table>

END OPTIONS

<table>
<thead>
<tr>
<th>EFFECT / RANGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot Timer: 0 to 120.0 Seconds</td>
<td>Adjusts the time welding will continue even if trigger is still pulled. This option has no effect in 4-Step Trigger Mode.</td>
</tr>
<tr>
<td>Postflow Time 0 to 25.0 seconds</td>
<td>Adjusts the time that shielding gas flows after the welding output turns off.</td>
</tr>
<tr>
<td>Crater Procedure (0 TO 10.0 SECONDS)</td>
<td>Crater Procedure controls the WFS and Volts for a specified time at the end of the weld after the trigger is released. During the Crater time, the machine will ramp up or down from the Weld Procedure to the Crater Procedure.</td>
</tr>
<tr>
<td>Burnback: 0 to .25 Seconds</td>
<td>The burnback time is the amount of time that the weld output continues after the wire stops feeding. It prevents the wire from sticking in the puddle and prepares the end of the wire for the next arc start.</td>
</tr>
</tbody>
</table>
MACHINE FUNCTIONALITY BY WELD PROCESS
GMAW (SYNERGIC)

Use the following tables to review how the machine functions (output controls, arc control, Start options and weld options) for the weld modes listed in the top table.

SYNERGIC CV MODES

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PROCESS</th>
<th>GAS</th>
<th>WIRE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>GMAW</td>
<td>CO₂</td>
<td>0.030</td>
</tr>
<tr>
<td>Steel</td>
<td>GMAW</td>
<td>Ar(Mix)</td>
<td>94</td>
</tr>
<tr>
<td>Stainless</td>
<td>GMAW</td>
<td>Ar(Mix)</td>
<td>61</td>
</tr>
<tr>
<td>Stainless</td>
<td>GMAW</td>
<td>Ar/He/CO₂</td>
<td>63</td>
</tr>
<tr>
<td>Aluminum 4043</td>
<td>TIG</td>
<td>Ar</td>
<td>---</td>
</tr>
<tr>
<td>Aluminum 5356</td>
<td>TIG</td>
<td>Ar</td>
<td>---</td>
</tr>
<tr>
<td>Metal Core</td>
<td>GMAW</td>
<td>Ar/CO₂</td>
<td>---</td>
</tr>
</tbody>
</table>

OUTPUT CONTROL KNOBS

<table>
<thead>
<tr>
<th>EFFECT / RANGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PINCH EFFECT</td>
<td>Adjust the short circuit current to create a soft arc, or a forceful, digging arc.</td>
</tr>
</tbody>
</table>

ARC CONTROL

EFFECT / RANGE

Spot Timer:
- **0 to 120.0 Seconds**
 - Adjusts the time welding will continue even if trigger is still pulled. This option has no effect in 4-Step Trigger Mode.

END OPTIONS

Spot Timer:
- **0 to 120.0 Seconds**
 - Adjusts the time welding will continue even if trigger is still pulled. This option has no effect in 4-Step Trigger Mode.

- **Postflow Time**
 - **0 to 10 seconds**
 - Adjusts the time that shielding gas flows after the welding output turns off.

- **Burnback:**
 - **0 to .25 Seconds**
 - The burnback time is the amount of time that the weld output continues after the wire stops feeding. It prevents the wire from sticking in the puddle and prepares the end of the wire for the next arc start.

- **Crater Procedure**
 - Crater Procedure controls the WFS and volts for a specified time at the end of the weld after the trigger is released. During the Crater time, the machine will ramp up or down from the Weld Procedure to the Crater Procedure.
MACHINE FUNCTIONALITY BY WELD PROCESS
PULSE AND PULSE-ON-PULSE (SYNERGIC)

Use the following tables to review how the machine functions (output controls, arc control, Start options and weld options) for the weld modes listed in the top table.

PULSE AND PULSE-ON-PULSE MODES

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PROCESS</th>
<th>GAS</th>
<th>WIRE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUMINUM 4043</td>
<td>Pulse</td>
<td>Ar</td>
<td>149 72 74</td>
</tr>
<tr>
<td>ALUMINUM 4043</td>
<td>Pulse-on-Pulse</td>
<td>Ar</td>
<td>98 99 100</td>
</tr>
<tr>
<td>ALUMINUM 5356</td>
<td>Pulse</td>
<td>Ar</td>
<td>152 76 78</td>
</tr>
<tr>
<td>ALUMINUM 5356</td>
<td>Pulse-on-Pulse</td>
<td>Ar</td>
<td>101 102 103</td>
</tr>
</tbody>
</table>

OUTPUT CONTROL KNOBS

- **WFS**: Wire Feed Speed
- **AMPS**: Amperage
- **VOLTS**: Volts
- **TRIM**: Trim

ARC CONTROL

PULSE FREQUENCY:

<table>
<thead>
<tr>
<th>(Low)-10.0 to (High)+10.0</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Pulse modes, Arc Control changes the pulsing frequency. When the frequency changes, the Power Wave system automatically adjusts the background current to maintain a similar heat input into the weld. Low frequencies give more control over the puddle and high frequencies minimize spatter.</td>
<td></td>
</tr>
</tbody>
</table>

START OPTIONS

PREFLOW TIME

<table>
<thead>
<tr>
<th>0 to 10 seconds</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusts the time the gas flows after the trigger is pulled and prior to feeding wire.</td>
<td></td>
</tr>
</tbody>
</table>

RUN-IN WFS:

<table>
<thead>
<tr>
<th>Off, 50 to 150 in/min.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run-in sets the wire feed speed from the time the trigger is pulled until an arc is established.</td>
<td></td>
</tr>
</tbody>
</table>

Start Procedure

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Start Procedure controls the WFS. Trim at a specified time at the beginning of the weld. During the start time, the machine will ramp up or down from the Start Procedure to the preset Welding Procedure.</td>
</tr>
</tbody>
</table>

END OPTIONS

EFFECT / RANGE

<table>
<thead>
<tr>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusts the time that shielding gas flows after the welding output turns off.</td>
</tr>
<tr>
<td>The burnback time is the amount of time that the weld output continues after the wire stops feeding. It prevents the wire from sticking in the puddle and prepares the end of the wire for the next arc start.</td>
</tr>
<tr>
<td>Crater Procedure controls the WFS and volts for a specified time at the end of the weld after the trigger is released. During the Crater time, the machine will ramp up or down from the Weld Procedure to the Crater Procedure.</td>
</tr>
<tr>
<td>Adjusts the time welding will continue even if trigger is still pulled. This option has no effect in 4-Step Trigger Mode.</td>
</tr>
</tbody>
</table>
MACHINE FUNCTIONALITY BY WELD PROCESS
STT AND STT II (NON-SYNERGIC)

Use the following tables to review how the machine functions (output controls, arc control, Start options and weld options) for the weld modes listed in the top table.

OUTPUT CONTROL KNOBS (There is no Voltage control when STT welding.)

<table>
<thead>
<tr>
<th>OUTPUT CONTROL KNOBS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFLOW TIME</td>
<td>Adjusts the time the gas flows after the trigger is pulled and prior to feeding wire.</td>
</tr>
<tr>
<td>RUN-IN WFS:</td>
<td>Run-in sets the wire feed speed from the time the trigger is pulled until an arc is established.</td>
</tr>
<tr>
<td>Start Procedure</td>
<td>The Start Procedure is not commonly used with STT procedures.</td>
</tr>
</tbody>
</table>

START OPTIONS

<table>
<thead>
<tr>
<th>PARAMETER RANGE</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot Timer:</td>
<td>Adjusts the time welding will continue even if trigger is still pulled. This option has no effect in 4-Step Trigger Mode.</td>
</tr>
<tr>
<td>Postflow Time:</td>
<td>Adjusts the time that shielding gas flows after the welding output turns off.</td>
</tr>
<tr>
<td>Crater Procedure</td>
<td>Crater Procedure is not commonly used in STT weld procedures.</td>
</tr>
<tr>
<td>Burnback:</td>
<td>The burnback time is the amount of time that the weld output continues after the wire stops feeding. It prevents the wire from sticking in the puddle and prepares the end of the wire for the next arc start.</td>
</tr>
</tbody>
</table>

ARC CONTROL

<table>
<thead>
<tr>
<th>EFFECT / RANGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEAK CURRENT</td>
<td>Peak Current acts similar to an arc pinch control. Peak Current sets the arc length and promotes good fusion. Higher peak current levels will cause the arc to broaden momentarily while increasing arc length. If set too high, globular transfer may occur. Setting it too low may cause instability and wire stubbing. Best practice is to adjust for minimum spatter and puddle agitation.</td>
</tr>
<tr>
<td>BACKGROUND CURRENT</td>
<td>Background Current controls the overall heat input in the weld.</td>
</tr>
<tr>
<td>TAIL OUT (STT II MODES ONLY)</td>
<td>Tail out provides additional power without the molten droplet becoming too large. Increase as necessary to add heat input without increasing arc length. Often this results in faster travel speeds. Note that as tail out increases, the peak current and/or background current may need to be adjusted.</td>
</tr>
</tbody>
</table>
MACHINE FUNCTIONALITY BY WELD PROCESS

GTAW (Touch Start TIG) Welding

Use the following tables to review how the machine functions (output controls, arc control, Start options and weld options) for the weld modes listed in the top table.

TOUCH START TIG

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PROCESS</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Metals</td>
<td>Touch Start TIG</td>
<td>3</td>
</tr>
</tbody>
</table>

ARC CONTROL

No Arc Controls are active for Touch Start TIG.

OUTPUT CONTROL KNOBS

<table>
<thead>
<tr>
<th>Amperage</th>
<th>Output Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>OFF</td>
</tr>
</tbody>
</table>

START OPTIONS

No Arc Controls are active for Touch Start TIG.

END OPTIONS

During the Crater Time, the Amperage will ramp up or down from the weld Amperage to the Crater Amperage.

GTAW (TIG) WELDING

The Power Feed / PowerWave system is excellent for Touch Start TIG welding.

The system supports both TIG torches with or without gas control valves. TIG torches with gas control valves connect directly to the gas flow regulator. For TIG torches without gas control valves, connect the output gas hose on the POWER FEED® 10M Single Wire Feeder.

Touch Start TIG Weld Sequence

<table>
<thead>
<tr>
<th>TIG torches without built-in Gas Valves</th>
<th>No Foot/Hand Amptrrol</th>
<th>With Foot/Hand Amptrrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Adjust the arc amperage with the left knob on the display panel.</td>
<td>1. Adjust the maximum arc amperage with the left knob on the display panel.</td>
<td></td>
</tr>
<tr>
<td>2. Turn the right knob on the display panel until the Output Control is ON. Gas will start to flow.</td>
<td>2. Touch the tungsten to the work piece.</td>
<td></td>
</tr>
<tr>
<td>3. Touch the tungsten to the work piece.</td>
<td>3. Press the foot pedal or slide the hand amptrol a slight amount. Gas will start to flow.</td>
<td></td>
</tr>
<tr>
<td>4. Lift the tungsten to create an arc and weld.</td>
<td>4. Lift the tungsten to create an arc.</td>
<td></td>
</tr>
<tr>
<td>5. Stop welding by turning the Output Control to OFF, or by pulling away the tungsten from the work.</td>
<td>5. Regulate the arc current with the foot pedal or hand amptrol.</td>
<td></td>
</tr>
<tr>
<td>6. Gas flow will continue for a short time and then shut-off.</td>
<td>6. Stop welding by releasing the foot pedal or hand amptrol, or by pulling the tungsten away from the work.</td>
<td></td>
</tr>
<tr>
<td>7. Gas will continue for a short time and then shut-off.</td>
<td>7. Close the gas valve on the TIG torch.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIG torches with built-in Gas Valves</th>
<th>No Foot/Hand Amptrrol</th>
<th>With Foot/Hand Amptrrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Adjust the arc amperage with the left knob on the display panel.</td>
<td>1. Adjust the maximum arc amperage with the left knob on the display panel.</td>
<td></td>
</tr>
<tr>
<td>2. Turn the right knob on the display panel until the Output Control is ON.</td>
<td>2. Touch the tungsten to the work piece.</td>
<td></td>
</tr>
<tr>
<td>3. Open the gas valve on the TIG torch.</td>
<td>3. Press the foot pedal or slide the hand amptrol a slight amount.</td>
<td></td>
</tr>
<tr>
<td>4. Touch the tungsten to the work piece.</td>
<td>4. Open the gas valve on the TIG torch.</td>
<td></td>
</tr>
<tr>
<td>5. Lift the tungsten to create an arc and weld.</td>
<td>5. Lift the tungsten to create an arc.</td>
<td></td>
</tr>
<tr>
<td>6. Stop welding by turning the Output Control to OFF, or by pulling away the tungsten from the work.</td>
<td>6. Regulate the arc current with the foot pedal or hand amptrol.</td>
<td></td>
</tr>
<tr>
<td>7. Close the gas valve on the TIG torch.</td>
<td>7. Stop welding by releasing the foot pedal or hand amptrol, or by pulling the tungsten away from the work.</td>
<td></td>
</tr>
</tbody>
</table>
WELD MODE SEARCHING

The Weld Mode Search feature allows the selection of a welding mode based on certain criteria (wire size, process type, etc.).

SEARCHING FOR A WELD MODE

To search for a mode, turn the control knob until "Weld Mode Search" is displayed. This will appear in between the highest and the lowest weld mode numbers.

Once "Weld Mode Search" is displayed, pressing the right pushbutton labeled "Begin" will start the search process.

During the search process, pressing the right pushbutton typically acts as a "next" button and the left pushbutton typically acts as a "back" button.

Rotate the control knob then press the right pushbutton to select relevant welding details such as welding process, wire type, wire size, etc.

When the final selection is made, the PF10M™ will automatically change to the weld mode found by the Weld Mode Search process.

Earlier products may not have this feature. To activate this feature, a software update may be needed from www.powerwavesoftware.com

USER MEMORIES

Recall a memory with memory buttons

To recall a user memory, press one of the six user memory buttons. The memory is recalled when the button is released. Do not hold the button for more than two seconds when recalling a user memory.

Recall a memory with the gun trigger

If desired, memories 2 through 6 can be recalled with the gun trigger. For example, to recall memory 3, quickly pull and release the gun trigger 3 times without welding.

Note: the POWER FEED® 10M Single Wire Feeder is factory set with this feature disabled. Use the SETUP menu and change P.4 to enable memory recall with the gun trigger.
6. OPTIONAL DUAL PROCEDURE/MEMORY PANEL OPERATION

The Dual Procedure/Memory Panel performs three functions:

- Weld procedure selection
- Memory save and recall
- Limits setting

There are two procedure memories (A and B) and six user memories (1-6).

Procedure Memory vs. User Memory

Procedure memory is used while welding. Changes to the weld procedure (WFS, voltage, arc control, etc.) immediately change the contents inside the selected procedure memory. Procedure memory saving is done automatically.

User memories work by copying the weld procedure from one of the six memories into either the A or B procedure. Weld procedures are saved into the memories only when the operator chooses.

Using Procedure Memories

Procedure memories can be selected by choosing either "A" or "B" procedure directly with the memory panel, or by selecting "GUN" and using a dual procedure gun to select between procedure "A" and "B". When selecting procedures with the gun switch, "A" or "B" will flash to show which procedure is active.

LIMIT SETTING

Each user memory can be optionally configured to limit the user's range of control over some user interface settings. By default, user limits are not enabled. To set limits for a selected memory, first select a weld mode and perform a memory save. Next, press and hold the memory button for five seconds. Release the memory button when the memory LED begins to blink rapidly and the Mode Select Panel displays indicate "Set Limits".

If the passcode has been set to a value other than zero, the user will be prompted to enter it. If the passcode is zero, the Mode Select Panel will immediately display the Limit Setup menu and the SETUP LED will illuminate:

The above example shows a wire mode, constant current weld modes would show "Weld Amps" rather than "Weld WFS".

There are four items displayed on each Limit Setup screen. The long alphanumeric display shows the selected attribute (e.g. Weld WFS, Volts, etc.). The short alphanumeric displays show the selected attribute's high and low user limits. The 7-segment displays show the value that is copied to procedure memory when a memory recall is performed.

Memory Value

<table>
<thead>
<tr>
<th>Attribute</th>
<th>High Limit</th>
<th>Low Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELD WFS</td>
<td>200</td>
<td>180</td>
</tr>
<tr>
<td>WELD MODE</td>
<td>220</td>
<td>180</td>
</tr>
<tr>
<td>ARC CONTROL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAVEFORM CONTROL TECHNOLOGY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
One of these four items will blink to indicate which item will change when the Mode Select Panel Knob is rotated. Initially, the selected item will be the attribute. To select the high limit, press either Mode Select Panel button and the high limit value will begin to blink. Pressing either Mode Select Panel button again will cause the memory value to blink, pressing a third time will cause the low limit to blink.

Weld modes cannot be selected from the Limits Setup menu; the mode must be selected and saved to memory prior to entering the Limits Setup menu.

The memory value, high and low limit values are bound by the limits of the machine. For example, weld mode 49 may allow the wire feed speed to be adjusted between 100 and 700 in/min. These are referred to as "machine limits". Machine limits can vary between power sources and are also weld mode dependent.

The memory value must always be less than or equal to the high limit and greater than or equal to the low limit. The high limit must always be greater than or equal to the low limit and the low limit must always be less than or equal to the high limit. The rules are enforced automatically. If the low limit is increased above the memory value, the memory value will automatically increase.

To lock an attribute to a specific value, set the high and low limits to the desired value. The user will not be able to change it.

After setting limits, press the memory button that is flashing. The Mode Select Panel displays will prompt the user to save or discard the limit changes just made.

By pressing the Mode Select Panel button labeled YES, changes to limits are saved and user limits are automatically enabled. By pressing NO, any changes made to limits are discarded and the limit enable/disable state is not changed.

To enable or disable limits that have been established for any memory, press and hold the respective memory button in for more than 10 seconds until the Mode Select Panel displays "Enable Limits?" Pressing "Yes" will use the established limits, while pressing "No" will ignore the established limits. The limits that have been set for any memory location will not be erased if they are disabled.
<table>
<thead>
<tr>
<th>Accessory Code</th>
<th>Description</th>
<th>Includes</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2429-1</td>
<td>ArcLink "T" Cable Connector</td>
<td>Includes: 1 "T" connector for connecting 2 Wire Feeders to 1 Power Source.</td>
</tr>
<tr>
<td>K2360-1</td>
<td>Dual Procedure/Memory Panel</td>
<td>Includes: 1 memory panel</td>
</tr>
<tr>
<td>K1543-xx</td>
<td>ArcLink Cables</td>
<td>Includes: 1 ArcLink cable of length "xx"</td>
</tr>
<tr>
<td>K1796-xx</td>
<td>Co-Axial Power Cable</td>
<td>Includes: AWG 1/0 Coaxial weld cable of length "xx". Ends of the weld cable have lug connections. K2593-xx weld cables</td>
</tr>
<tr>
<td>K1842-xx</td>
<td>Weld Power Cable</td>
<td>Includes: Lug to Lug, 3/0 Cable of length "xx".</td>
</tr>
<tr>
<td>K1500-1</td>
<td>Gun Receiver Bushing (for guns with K466-1 Lincoln gun connectors; Innershield and Subarc guns)</td>
<td>Includes: Gun receiver bushing, set screw and hex key wrench.</td>
</tr>
<tr>
<td>K1500-2</td>
<td>Gun Receiver Bushing (for guns with K466-2, K466-10 Lincoln gun connectors; Magnum 200/300/400 guns and compatible with Tweco® #4)</td>
<td>Includes: Gun receiver bushing with hose nipple, set screw and hex key wrench.</td>
</tr>
<tr>
<td>K1500-3</td>
<td>Gun Receiver Bushing (for guns with K1637-7 Lincoln gun connectors; Magnum 550 guns and compatible with Tweco® #5)</td>
<td>Includes: Gun receiver bushing with hose nipple, set screw and hex key wrench.</td>
</tr>
<tr>
<td>Part No.</td>
<td>Description</td>
<td>Includes</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>K1500-4</td>
<td>Gun Receiver Bushing (for gun with K466-3 Lincoln gun connectors; compatible with Miller® guns.)</td>
<td>Gun receiver bushing with hose nipple, set screw and hex key wrench.</td>
</tr>
<tr>
<td>K1500-5</td>
<td>Gun Receiver Bushing (compatible with Oxo® guns.)</td>
<td>Gun receiver bushing with hose nipple, 4 guide tubes, set screw and hex key wrench.</td>
</tr>
<tr>
<td>K489-9</td>
<td>Gun Receiver Bushing (for Lincoln Fast-Mate guns.)</td>
<td>Gun receiver bushing with trigger connector.</td>
</tr>
<tr>
<td>K466-2</td>
<td>Magnum 200/300/400 to K1500-2 Adapter</td>
<td>Gun adapter, cotter pin, hex key wrench, wrench.</td>
</tr>
<tr>
<td>K613-7</td>
<td>Magnum 550 to K1500-3 Adapter</td>
<td>Trigger adapter, gun adapter and hex key wrench.</td>
</tr>
<tr>
<td>K1546-1</td>
<td>Incoming Bushing, Lincoln Conduit .025- 1/16"</td>
<td>Incoming bushing and hex key wrench.</td>
</tr>
<tr>
<td>K1546-2</td>
<td>Incoming Bushing, Lincoln Conduit 1/16-1/8"</td>
<td>Incoming bushing and hex key wrench.</td>
</tr>
<tr>
<td>K1733-1</td>
<td>Wire Straightener</td>
<td>Wire Straightener.</td>
</tr>
<tr>
<td>K870-1</td>
<td>Foot Amptrol</td>
<td>Foot Amptrol</td>
</tr>
<tr>
<td>K936-1</td>
<td>Hand Amptrol LA-9/-17/LW20</td>
<td>Hand Amptrol LA-9/-17/LW20</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Accessories</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>K162-1</td>
<td>Spindle Adapter, for Readi-Reels and 2" ID spools up to 60 lb.</td>
<td>Includes: Spindle Assembly with locking clip.</td>
</tr>
<tr>
<td>K435</td>
<td>Spindle Adapter, for mounting 14 lb. Innershield Coils on 2" spindles.</td>
<td>Includes: Spindle Adapter made from 2 coil retainers. (Electrode not included.)</td>
</tr>
<tr>
<td>K468</td>
<td>Spindle Adapter, for mounting 8" dia. spools on 2" spindles.</td>
<td>Includes: Spindle Adapter.</td>
</tr>
<tr>
<td>K363P</td>
<td>Readi-Reel Adapter, for mounting 23-30 lb. reels to 2" spindles.</td>
<td>Includes: Readi-Reel spool adapter. (Spool of electrode not included.)</td>
</tr>
<tr>
<td>K438</td>
<td>Readi-Reel Adapter, for mounting 50-60 lb. reels to 2" spindles.</td>
<td>Includes: Readi-Reel spool adapter. (Spool of electrode not included.)</td>
</tr>
<tr>
<td>K1504-1</td>
<td>Coil Adapter, for mounting 50-60 lb. coils to 2" spindles.</td>
<td>Includes: 50-60 lb. coil adapter.</td>
</tr>
<tr>
<td>K1634-3</td>
<td>Plastic Wire Cover for 30-44 lb. Wire packages.</td>
<td>Includes: Cover, backing plate, wire conduit, incoming bushing for .025 - 1/16" wire, incoming bushing for 1/16" - 1/8" wire, thumb screw, mounting hardware and hex key.</td>
</tr>
<tr>
<td>K1634-2</td>
<td>Plastic Wire Cover for up to 60 lb. Wire packages.</td>
<td></td>
</tr>
<tr>
<td>K590-6</td>
<td>Water Connection Kit</td>
<td>Includes: 2 hoses, 4 quick disconnect fittings, hose clamps and mounting hardware.</td>
</tr>
</tbody>
</table>
SAFETY PRECAUTIONS

WARNING

ELECTRIC SHOCK can kill.
• Do not touch electrically live parts such as output terminals or internal wiring.
• When inching with gun trigger, electrode and drive mechanism are “hot” to work and ground and could remain energized several seconds after the gun trigger is released.
• Turn OFF input power at welding power source before installation or changing drive roll and/or guide tubes.
• Welding power source must be connected to system ground per the National Electrical Code or any applicable local codes.
• Only qualified personnel should perform maintenance work.

Observe all additional Safety Guidelines detailed throughout this manual.

ROUTINE MAINTENANCE

• Check weld cables, control cables and gas hoses for cuts.

• Clean and tighten all weld terminals.

• Inspect and clean drive rolls and inner wire guide and replace if worn.

PERIODIC MAINTENANCE

• Blow out or vacuum the inside of the feeder.

• Every six months check the motor brushes. Replace them if they are less than 1/4" long.

• Every year inspect the gearbox and coat the gear teeth with a moly-disulfide filled grease. DO NOT use graphite grease.

CALIBRATION SPECIFICATION

All calibration is factory set on the POWER FEED® 10M Single Wire Feeder.

To verify the wire feed speed:

• Assemble a .045 (1.2mm) drive roll kit into the POWER FEED® 10M Single Wire Feeder.

• Load a spool of .045 (1.2mm) electrode and thread the electrode through the wire drive.

• Adjust the wire feed speed to 300 in/min (7.62m/min).

• Press the COLD FEED switch and measure the actual wire feed speed with a calibrated wire feed speed tachometer.

• The measured wire feed speed should be within ±2% of the set value.
Service and Repair should only be performed by Lincoln Electric Factory Trained Personnel. Unauthorized repairs performed on this equipment may result in danger to the technician and machine operator and will invalidate your factory warranty. For your safety and to avoid Electrical Shock, please observe all safety notes and precautions detailed throughout this manual.

This Troubleshooting Guide is provided to help you locate and repair possible machine malfunctions. Simply follow the three-step procedure listed below.

Step 1. LOCATE PROBLEM (SYMPTOM).
Look under the column labeled “PROBLEM (SYMPTOM)”. This column describes possible symptoms that the machine may exhibit. Find the listing that best describes the symptom that the machine is exhibiting.

Step 2. POSSIBLE CAUSE.
The second column labeled “POSSIBLE CAUSE” lists the obvious external possibilities that may contribute to the machine symptom.

Step 3. RECOMMENDED COURSE OF ACTION
This column provides a course of action for the Possible Cause, generally it states to contact your local Lincoln Authorized Field Service Facility.

If you do not understand or are unable to perform the Recommended Course of Action safely, contact your local Lincoln Authorized Field Service Facility.

If for any reason you do not understand the test procedures or are unable to perform the tests/repairs safely, contact your Local Lincoln Authorized Field Service Facility for technical troubleshooting assistance before you proceed.
Observe all Safety Guidelines detailed throughout this manual

<table>
<thead>
<tr>
<th>PROBLEMS (SYMPTOMS)</th>
<th>POSSIBLE CAUSE</th>
<th>RECOMMENDED COURSE OF ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINC-NET SYSTEM ERROR CODES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Err 006 | 1. The wire feeder has not received a recognition command from the power source. Verify the power source is operating properly (Status light steady green.)
2. Check control cable for loose or broken leads.
| Err 100 | 1. The power source has issued a shutdown command. Verify the power source is operating properly. (Status light steady green.)
2. Check control cable for loose or broken leads.
| **ARCLINK SYSTEM ERROR CODES** | | If all recommended possible areas of misadjustment have been checked and the problem persists, Contact your local Lincoln Authorized Field Service Facility. |
| Err 31 Primary overcurrent | 1. The power source has exceeded input current limits. Adjust the welding procedure to reduce the current draw. The welding procedure may exceed the capacity of the power source.
2. See the power source Instruction Manual. | |
| Err 32 Capacitor bank "A" under voltage. | 1. The power source input power may be wired incorrectly. Verify the power source reconnect panel wiring matches the input power.
2. See the power source Instruction Manual. | |

CAUTION

If for any reason you do not understand the test procedures or are unable to perform the tests/repairs safely, contact your Local Lincoln Authorized Field Service Facility for technical troubleshooting assistance before you proceed.
<table>
<thead>
<tr>
<th>PROBLEMS (SYMPTOMS)</th>
<th>POSSIBLE CAUSE</th>
<th>RECOMMENDED COURSE OF ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCLINK SYSTEM ERROR CODES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Err 33 Capacitor bank "B" undervoltage.</td>
<td>1. The power source input power may be wired incorrectly. Verify the power source reconnect panel wiring matches the input power. 2. See the power source Instruction Manual.</td>
<td></td>
</tr>
<tr>
<td>Err 35 Capacitor bank "B" overvoltage.</td>
<td>1. The power source input power may be wired incorrectly. Verify the power source reconnect panel wiring matches the input power. 2. See the power source Instruction Manual.</td>
<td></td>
</tr>
<tr>
<td>Err 41 Long term secondary overcurrent.</td>
<td>1. The power source has exceeded the output current limits. Adjust the welding procedure to reduce the current draw. The welding procedure may exceed the capacity of the power source. 2. See the power source Instruction Manual.</td>
<td></td>
</tr>
<tr>
<td>Err 43 Capacitors are out of balance</td>
<td>1. Verify the power source reconnect panel wiring matches the input power. 2. See the power source Instruction Manual.</td>
<td></td>
</tr>
</tbody>
</table>

CAUTION

If for any reason you do not understand the test procedures or are unable to perform the tests/repairs safely, contact your **Local Lincoln Authorized Field Service Facility** for technical troubleshooting assistance before you proceed.
Troubleshooting

Observe all Safety Guidelines detailed throughout this manual.

ARCLINK System Error Codes

<table>
<thead>
<tr>
<th>PROBLEMS (SYMPTOMS)</th>
<th>POSSIBLE CAUSE</th>
<th>RECOMMENDED COURSE OF ACTION</th>
</tr>
</thead>
</table>
| Err 44 Main CPU problem. | 1. Verify the ground connection to the power source is wired correctly.
2. See the power source Instruction Manual. | If all recommended possible areas of misadjustment have been checked and the problem persists, Contact your local Lincoln Authorized Field Service Facility. |
| Err 53 Voltage sense loss. | | |
| Err 54 Short term secondary over-current. | | |
| Err 81 Motor overload, long term. | 1. The wire drive motor has overheated. Check that the electrode slides easily through the gun and cable.
2. Remove tight bends from the gun and cable.
3. Check that the spindle brake is not too tight.
4. Verify a high quality electrode is being used.
5. Wait for the error to reset and the motor to cool (approximately 1 minute). | |
| Err 82 Motor overload, short term. | 1. The wire drive motor current draw has exceeded limits, usually because the motor is in a locked rotor state. Check that motor can turn freely when idle arm is open.
2. Verify that the gears are free of debris and dirt. | |
| Err 95 Spool gun or pull gun motor overload. | 1. The drive motor in the spool gun or push-pull gun is drawing too much current. | |
| Err 263 No usable weld modes. | 1. The power source does not have any welding programs loaded. | |

Caution

If for any reason you do not understand the test procedures or are unable to perform the tests/repairs safely, contact your Local Lincoln Authorized Field Service Facility for technical troubleshooting assistance before you proceed.
PROBLEMS (SYMPTOMS)

POSSIBLE CAUSE

RECOMMENDED COURSE OF ACTION

OUTPUT PROBLEMS

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Recommended Course of Action</th>
</tr>
</thead>
</table>
| The feeder does power up - no display, no cold feed. | 1. The Power Wave power source is OFF. Turn ON the Power Wave power source.
2. The circuit breaker for the wire feeder on power source have tripped. Reset the circuit breakers.
3. The control cable may be loose or damaged. Tighten, repair or replace the control cable. | If all recommended possible areas of misadjustment have been checked and the problem persists, **Contact your local Lincoln Authorized Field Service Facility.** |
| No shielding gas. | 1. The gas supply is OFF or empty. Verify the gas supply is ON and flowing.
2. The gas hose is cut or crushed. Route the gas hose so it avoids sharp corners and make sure nothing is on top of it. Repair or replace damaged hoses.
3. Dirt or debris is in the solenoid. Apply filtered shop at 80psi to the solenoid to remove dirt.
4. There is a loose solenoid connection. Remove the cover and check that all connections are in good condition.
5. The solenoid has failed. | |
| Gas solenoid not operating properly or intermittent. | 1. Inlet gas pressure exceeding 80 psi(5.5 bar). Verify that gas pressure regulator is operating properly. | |

CAUTION

If for any reason you do not understand the test procedures or are unable to perform the tests/repairs safely, contact your **Local Lincoln Authorized Field Service Facility** for technical troubleshooting assistance before you proceed.
<table>
<thead>
<tr>
<th>PROBLEMS (SYMPTOMS)</th>
<th>POSSIBLE CAUSE</th>
<th>RECOMMENDED COURSE OF ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inconsistent wire feeding or wire not feeding but drive rolls turning.</td>
<td>1. The gun cable is kinked and/or twisted. Keep the gun cable as straight as possible. Avoid sharp corners or bends in the cable.</td>
<td>If all recommended possible areas of misadjustment have been checked and the problem persists, Contact your local Lincoln Authorized Field Service Facility.</td>
</tr>
<tr>
<td></td>
<td>2. The wire is jammed in the gun and cable. Remove the gun from the wire feeder and pull the jammed wire out of the gun and cable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. The gun liner is dirty or worn. Blow dirt out of the liner with low pressure (40psi or less). Replace the liner if worn.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. The electrode is rusty or dirty. Use only clean electrode. Use quality electrode, like L-50 or Super Arc L-56 from Lincoln Electric.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. The contact tip is partially melted or has spatter. Replace the contact tip.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Improper gun liner, tip, drive rolls and/or inner wire guide. Verify the proper parts are installed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Incorrect tension arm pressure on the drive rolls. Adjust the tension arm per the Instruction Manual. Most electrodes feed well at a tension arm setting of "3".</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Worn drive roll. Replace the drive rolls if worn or filled with dirt.</td>
<td></td>
</tr>
<tr>
<td>PROBLEMS (SYMPTOMS)</td>
<td>POSSIBLE CAUSE</td>
<td>RECOMMENDED COURSE OF ACTION</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Wire feed speed consistently operates at the wrong value.</td>
<td>1. The wire feeder gear setting is not properly set. Verify the POWER FEED® 10M Single Wire Feeder software setting matches the gear mounted. See the Instruction Manual for setting the gear speed.</td>
<td></td>
</tr>
<tr>
<td>Variable or "hunting" arc.</td>
<td>1. Wrong size, worn and/or melted contact tip. Replace the contact tip.</td>
<td>If all recommended possible areas of misadjustment have been checked and the problem persists, Contact your local Lincoln Authorized Field Service Facility.</td>
</tr>
<tr>
<td></td>
<td>2. Worn work cable or poor work connection. Verify all work and electrode connections are tight and that the cables are in good condition. Clean/replace as necessary.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Wrong polarity. Adjust polarity to the recommended procedure. Verify DIP switch #7 setting matches the electrode polarity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. The gas nozzle is extended beyond the contact tip or the wire stickout is too long. Adjust the gas nozzle and shorten the contact tip to work distance 1/2" to 3/8" inches.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Poor gas shielding on processes requiring gas. Check gas flow and mixture. Remove or block sources of drafts.</td>
<td></td>
</tr>
<tr>
<td>Poor arc starts with sticking or "blast-offs", weld porosity, narrow and ropy looking bead.</td>
<td>1. Improper procedures or techniques. See "Gas Metal Arc Welding Guide" (GS-100).</td>
<td></td>
</tr>
</tbody>
</table>

CAUTION

If for any reason you do not understand the test procedures or are unable to perform the tests/repairs safely, contact your **Local Lincoln Authorized Field Service Facility** for technical troubleshooting assistance before you proceed.

POWER FEED® 10M SINGLE WIRE FEEDER
POWER FEED® 10M SINGLE WIRE FEEDER

NOTE: This diagram is for reference only. It may not be accurate for all machines covered by this manual. The specific diagram for a particular code is pasted inside the machine on one of the enclosure panels. If the diagram is illegible, write to the Service Department for a replacement. Give the equipment code number.
POWER FEED® 10M SINGLE WIRE FEEDER

WIRE FEEDER (BENCH MODEL) DIMENSION PRINT
<table>
<thead>
<tr>
<th>WARNING</th>
<th>AVISO DE PRECAUCION</th>
<th>ATTENTION</th>
<th>WARNUNG</th>
<th>ATENÇÃO</th>
<th>注意事項</th>
<th>警告</th>
<th>위험</th>
<th>تحذير</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not touch electrically live parts or electrode with skin or wet clothing.</td>
<td>No toque las partes o los electrodos bajo carga con la piel o ropa mojada.</td>
<td>Ne laissez ni la peau ni des vêtements mouillés entrer en contact avec des pièces sous tension.</td>
<td>Berühren Sie keine stromführenden Teile oder Elektroden mit Ihrem Körper oder feuchter Kleidung!</td>
<td>Não toque partes elétricas e electrodros com a pele ou roupa molhada.</td>
<td>無電気部品を手に触れたり、湿った衣類に電極を触らないでください。</td>
<td>皮肤或浸衣物切勿接触带电部件及手。</td>
<td>近所に易燃物を置かないでください。</td>
<td>不使用時、電極を間接して作業し、電気ケーブルを絶縁材で保護してください。</td>
</tr>
<tr>
<td>Insulate yourself from work and ground.</td>
<td>Aislese del trabajo y de la tierra.</td>
<td>Isolez-vous du travail et de la terre.</td>
<td>Isolieren Sie sich von den Elektroden und dem Erdboden!</td>
<td>Isole-se da peça e terra.</td>
<td>無電気部品を手に触れたり、湿った衣類に電極を触らないでください。</td>
<td>皮肤或浸衣物切勿接触带电部件及手。</td>
<td>近所に易燃物を置かないでください。</td>
<td>不使用时，电极要绝缘，防止触电。</td>
</tr>
<tr>
<td>Keep flammable materials away.</td>
<td>Mantenga el material combustible fuera del área de trabajo.</td>
<td>Gardez à l’écart de tout matériel inflammable.</td>
<td>Entfernen Sie brennbarres Material!</td>
<td>Mantenha inflamáveis bem guardados.</td>
<td>使用时，易燃物需远离。</td>
<td>皮肤或浸衣物切勿接触带电部件及手。</td>
<td>近所に易燃物を置かないでください。</td>
<td>不使用时，电极要绝缘，防止触电。</td>
</tr>
<tr>
<td>Wear eye, ear and body protection.</td>
<td>Protéjase los ojos, los oídos y el cuerpo.</td>
<td>Protégez vos yeux, vos oreilles et votre corps.</td>
<td>Tragen Sie Augen-, Ohren- und Körperschutz!</td>
<td>Use proteção para a vista, ouvido e corpo.</td>
<td>使用时，易燃物需远离。</td>
<td>皮肤或浸衣物切勿接触带电部件及手。</td>
<td>近所に易燃物を置かないでください。</td>
<td>不使用时，电极要绝缘，防止触电。</td>
</tr>
</tbody>
</table>

READ AND UNDERSTAND THE MANUFACTURER’S INSTRUCTION FOR THIS EQUIPMENT AND THE CONSUMABLES TO BE USED AND FOLLOW YOUR EMPLOYER’S SAFETY PRACTICES.

SE RECOMIENDA LEER Y ENTENDER LAS INSTRUCCIONES DEL FABRICANTE PARA EL USO DE ESTE EQUIPO Y LOS CONSUMIBLES QUE VA A UTILIZAR, SIGA LAS MEDIDAS DE SEGURIDAD DE SU SUPERVISOR.

LISEZ ET COMPRENEZ LES INSTRUCTIONS DU FABRICANT EN CE QUI REGARDE CET EQUIPMENT ET LES PRODUITS A ETRE EMPLOYES ET SUIVEZ LES PROCEDURES DE SECURITE DE VOTRE EMPLOYEUR.

LESEN SIE UND BEFOLGEN SIE DIE BETRIEBSANLEITUNG DER ANLAGE UND DEN ELEKTRODENEINSATZ DES HERSTELLERS. DIE UNFALLVERHÜTUNGSVORSCHRIFTEN DES ARBEITGEBERS SIND Ebenfalls zu beachten.
<table>
<thead>
<tr>
<th>English</th>
<th>Spanish</th>
<th>French</th>
<th>German</th>
<th>Portuguese</th>
<th>Japanese</th>
<th>Chinese</th>
<th>Korean</th>
<th>Arabic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep your head out of fumes. Use ventilation or exhaust to remove fumes from breathing zone.</td>
<td>Los humos fuera de la zona de respiración. Utilice ventilación o aspiración para gases.</td>
<td>Gardez la tête à l’écart des fumées. Utilisez un ventilateur ou un aspirateur pour ôter les fumées des zones de travail.</td>
<td>Vermeiden Sie das Einatmen von Schweibrauch! Sorgen Sie für gute Be- und Entlüftung des Arbeitsplatzes!</td>
<td>Mantenha seu rosto da fumaça. Use ventilação e exhaustão para remover fumo da zona respiratória.</td>
<td>ヒュームから頭を離すようにしてください。換気や排煙に十分留意して下さい。</td>
<td>头部远离烟雾。在呼吸区域使用通风或排烟器除烟。</td>
<td>頭部遠離煙霧。在呼吸區使用通風或排風器除煙。</td>
<td>头部远离烟雾。在呼吸区使用通风或排烟器除烟。</td>
</tr>
<tr>
<td>Turn power off before servicing.</td>
<td>Desconectar el cable de alimentación de poder de la máquina antes de iniciar cualquier servicio.</td>
<td>Débranchez le courant avant l’entretien.</td>
<td>Strom vor Wartungsarbeiten abschalten! (Netzstrom völlig öffnen; Maschine anhalten!)</td>
<td>N’opérez pas avec les panneaux ouverts ou avec les dispositifs de protection enlevés.</td>
<td>メンテナンス・サービスに取りかかる際には、まず電源スイッチを必ず切って下さい。</td>
<td>請不要反動，使用前要先切断电源。</td>
<td>すべての電源を切った上で行って下さい。</td>
<td>電源スイッチを切ってください。</td>
</tr>
<tr>
<td>Do not operate with panel open or guards off.</td>
<td>No operar con panel abierto o guardas quitadas.</td>
<td>N’opérez pas avec les panneaux ouverts ou avec les dispositifs de protection enlevés.</td>
<td>Anlage nie ohne Schutzgehäuse oder Innenschutzverkleidung in Betrieb setzen!</td>
<td>Mantenha-se afastado das partes moventes. Não opere com os painéis abertos ou guardas removidas.</td>
<td>パネルやカバーを取り外したままで機械操作をしないで下さい。</td>
<td>升きの高さを考慮して上昇してください。</td>
<td>すべての電源を切った上で行って下さい。</td>
<td>願えてiscoを離れなさい。換気と排気を十分に留意して下さい。</td>
</tr>
<tr>
<td>Turn power off before servicing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WARNING

- Keep your head out of fumes.
- Use ventilation or exhaust to remove fumes from breathing zone.
- Los humos fuera de la zona de respiración. Utilice ventilación o aspiración para gases.
- Gardez la tête à l’écart des fumées. Utilisez un ventilateur ou un aspirateur pour ôter les fumées des zones de travail.
- Vermeiden Sie das Einatmen von Schweibrauch! Sorgen Sie für gute Be- und Entlüftung des Arbeitsplatzes!
- Mantenha seu rosto da fumaça. Use ventilação e exhaustão para remover fumo da zona respiratória.
- Strom vor Wartungsarbeiten abschalten! (Netzstrom völlig öffnen; Maschine anhalten!)
- N’opérez pas avec les panneaux ouverts ou avec les dispositifs de protection enlevés.
- Strom vor Wartungsarbeiten abschalten! (Netzstrom völlig öffnen; Maschine anhalten!)
- Anlage nie ohne Schutzgehäuse oder Innenschutzverkleidung in Betrieb setzen!
- Mantenha-se afastado das partes moventes. Não opere com os painéis abertos ou guardas removidas.
- ヒュームから頭を離すようにしてください。換気や排煙に十分留意して下さい。
- 請不要反動，使用前要先切断电源。
- 头部远离烟雾。在呼吸区使用通风或排烟器除烟。
- 頭部遠離煙霧。在呼吸區使用通風或排風器除煙。
- パネルやカバーを取り外したままで機械操作をしないで下さい。 |